Wigner molecules and hybrid qubits
- URL: http://arxiv.org/abs/2205.05620v1
- Date: Wed, 11 May 2022 16:43:11 GMT
- Title: Wigner molecules and hybrid qubits
- Authors: Constantine Yannouleas, Uzi Landman
- Abstract summary: We show that exact diagonalization of the microscopic many-body Hamiltonian via systematic full configuration-interaction calculations is able to predict the spectra.
We report remarkable agreement with recent experimental results.
The present FCI methodology for multi-well quantum dots can be straightforwardly extended to treat Si/SiGe hybrid qubits.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: It is demonstrated that exact diagonalization of the microscopic many-body
Hamiltonian via systematic full configuration-interaction (FCI) calculations is
able to predict the spectra as a function of detuning of three-electron hybrid
qubits based on GaAs asymmetric double quantum dots. It is further shown that,
as a result of strong inter-electron correlations, these spectroscopic
patterns, including avoided crossings between states associated with different
electron occupancies of the left and right wells, are inextricably related to
the formation of Wigner molecules. These physical entities cannot be captured
by the previously employed independent-particle or Hubbard-type theoretical
modeling of the hybrid qubit. We report remarkable agreement with recent
experimental results. Moreover, the present FCI methodology for multi-well
quantum dots can be straightforwardly extended to treat Si/SiGe hybrid qubits,
where the central role of Wigner molecules was recently experimentally
confirmed as well.
Related papers
- Ultrafast excitonic dynamics in DNA: Bridging correlated quantum
dynamics and sequence dependence [0.0]
We show that a tight-binding approach allows to correlate relaxation properties, average charge separation, and dipole moments to a large ensemble of DNA sequences.
By systematically screening the impact of electron-hole interaction (Coulomb forces), we verify that these correlations are relatively robust against finite-size variations of the interaction parameter.
arXiv Detail & Related papers (2024-02-23T18:24:58Z) - Multiparameter Persistent Homology for Molecular Property Prediction [1.8130068086063336]
This approach reveals the latent structures and relationships within molecular geometry.
We have conducted extensive experiments on the Lipophilicity, FreeSolv, and ESOL datasets to demonstrate its effectiveness in predicting molecular properties.
arXiv Detail & Related papers (2023-11-17T17:57:56Z) - Semiclassical truncated-Wigner-approximation theory of
molecular-vibration-polariton dynamics in optical cavities [0.0]
We develop here the semiclassical theory of molecular-vibration-polariton dynamics based on the truncated Wigner approximation (TWA)
The validity of TWA is examined by comparing it with the fully quantum dynamics of a single-molecule system.
The collective and resonance effects of molecular-vibration-polariton formation on the nuclear dynamics are observed in a system of many molecules.
arXiv Detail & Related papers (2023-11-14T01:06:22Z) - Real-time equation-of-motion CC cumulant and CC Green's function
simulations of photoemission spectra of water and water dimer [54.44073730234714]
We discuss results obtained with the real-time equation-of-motion CC cumulant approach.
We compare the ionization potentials obtained with these methods for the valence region.
We analyze unique features of the spectral functions, associated with the position of satellite peaks, obtained with the RT-EOM-CC and CCGF methods.
arXiv Detail & Related papers (2022-05-27T18:16:30Z) - Molecular formations and spectra due to electron correlations in
three-electron hybrid double-well qubits [0.0]
Wigner molecules (WMs) form in three-electron hybrid qubits based on GaAs asymmetric double quantum dots.
FCI calculations enable prediction of the energy spectra and the intrinsic spatial and spin structures of the many-body wave functions.
FCI methodology can be straightforwardly extended to treat valleytronic two-band Si/SiGe hybrid qubits.
arXiv Detail & Related papers (2022-04-05T14:28:14Z) - Tuning long-range fermion-mediated interactions in cold-atom quantum
simulators [68.8204255655161]
Engineering long-range interactions in cold-atom quantum simulators can lead to exotic quantum many-body behavior.
Here, we propose several tuning knobs, accessible in current experimental platforms, that allow to further control the range and shape of the mediated interactions.
arXiv Detail & Related papers (2022-03-31T13:32:12Z) - Quantum correlations, entanglement spectrum and coherence of
two-particle reduced density matrix in the Extended Hubbard Model [62.997667081978825]
We study the ground state properties of the one-dimensional extended Hubbard model at half-filling.
In particular, in the superconducting region, we obtain that the entanglement spectrum signals a transition between a dominant singlet (SS) to triplet (TS) pairing ordering in the system.
arXiv Detail & Related papers (2021-10-29T21:02:24Z) - Relativistic aspects of orbital and magnetic anisotropies in the
chemical bonding and structure of lanthanide molecules [60.17174832243075]
We study the electronic and ro-vibrational states of heavy homonuclear lanthanide Er2 and Tm2 molecules by applying state-of-the-art relativistic methods.
We were able to obtain reliable spin-orbit and correlation-induced splittings between the 91 Er2 and 36 Tm2 electronic potentials dissociating to two ground-state atoms.
arXiv Detail & Related papers (2021-07-06T15:34:00Z) - Chemical tuning of spin clock transitions in molecular monomers based on
nuclear spin-free Ni(II) [52.259804540075514]
We report the existence of a sizeable quantum tunnelling splitting between the two lowest electronic spin levels of mononuclear Ni complexes.
The level anti-crossing, or magnetic clock transition, associated with this gap has been directly monitored by heat capacity experiments.
The comparison of these results with those obtained for a Co derivative, for which tunnelling is forbidden by symmetry, shows that the clock transition leads to an effective suppression of intermolecular spin-spin interactions.
arXiv Detail & Related papers (2021-03-04T13:31:40Z) - Generalization of the Tavis-Cummings model for multi-level anharmonic
systems [0.0]
We study a collective ensemble of identical multi-level anharmonic emitters and their dipolar interaction with a photonic cavity mode.
The permutational properties of the system allow identifying symmetry classified submanifolds in the energy spectrum.
We expect these findings to be applicable in the study of non-linear spectroscopy and chemistry of polaritons.
arXiv Detail & Related papers (2021-01-23T10:40:00Z) - A multiconfigurational study of the negatively charged nitrogen-vacancy
center in diamond [55.58269472099399]
Deep defects in wide band gap semiconductors have emerged as leading qubit candidates for realizing quantum sensing and information applications.
Here we show that unlike single-particle treatments, the multiconfigurational quantum chemistry methods, traditionally reserved for atoms/molecules, accurately describe the many-body characteristics of the electronic states of these defect centers.
arXiv Detail & Related papers (2020-08-24T01:49:54Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.