Modeling Human Behavior Part I -- Learning and Belief Approaches
- URL: http://arxiv.org/abs/2205.06485v1
- Date: Fri, 13 May 2022 07:33:49 GMT
- Title: Modeling Human Behavior Part I -- Learning and Belief Approaches
- Authors: Andrew Fuchs and Andrea Passarella and Marco Conti
- Abstract summary: We focus on techniques which learn a model or policy of behavior through exploration and feedback.
Next generation autonomous and adaptive systems will largely include AI agents and humans working together as teams.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: There is a clear desire to model and comprehend human behavior. Trends in
research covering this topic show a clear assumption that many view human
reasoning as the presupposed standard in artificial reasoning. As such, topics
such as game theory, theory of mind, machine learning, etc. all integrate
concepts which are assumed components of human reasoning. These serve as
techniques to attempt to both replicate and understand the behaviors of humans.
In addition, next generation autonomous and adaptive systems will largely
include AI agents and humans working together as teams. To make this possible,
autonomous agents will require the ability to embed practical models of human
behavior, which allow them not only to replicate human models as a technique to
"learn", but to to understand the actions of users and anticipate their
behavior, so as to truly operate in symbiosis with them. The main objective of
this paper it to provide a succinct yet systematic review of the most important
approaches in two areas dealing with quantitative models of human behaviors.
Specifically, we focus on (i) techniques which learn a model or policy of
behavior through exploration and feedback, such as Reinforcement Learning, and
(ii) directly model mechanisms of human reasoning, such as beliefs and bias,
without going necessarily learning via trial-and-error.
Related papers
- Can Language Models Learn to Skip Steps? [59.84848399905409]
We study the ability to skip steps in reasoning.
Unlike humans, who may skip steps to enhance efficiency or to reduce cognitive load, models do not possess such motivations.
Our work presents the first exploration into human-like step-skipping ability.
arXiv Detail & Related papers (2024-11-04T07:10:24Z) - Human-Modeling in Sequential Decision-Making: An Analysis through the Lens of Human-Aware AI [20.21053807133341]
We try to provide an account of what constitutes a human-aware AI system.
We see that human-aware AI is a design oriented paradigm, one that focuses on the need for modeling the humans it may interact with.
arXiv Detail & Related papers (2024-05-13T14:17:52Z) - The Role of Higher-Order Cognitive Models in Active Learning [8.847360368647752]
We advocate for a new paradigm for active learning for human feedback.
We discuss how increasing level of agency results in qualitatively different forms of rational communication between an active learning system and a teacher.
arXiv Detail & Related papers (2024-01-09T07:39:36Z) - Real-time Addressee Estimation: Deployment of a Deep-Learning Model on
the iCub Robot [52.277579221741746]
Addressee Estimation is a skill essential for social robots to interact smoothly with humans.
Inspired by human perceptual skills, a deep-learning model for Addressee Estimation is designed, trained, and deployed on an iCub robot.
The study presents the procedure of such implementation and the performance of the model deployed in real-time human-robot interaction.
arXiv Detail & Related papers (2023-11-09T13:01:21Z) - Machine Psychology [54.287802134327485]
We argue that a fruitful direction for research is engaging large language models in behavioral experiments inspired by psychology.
We highlight theoretical perspectives, experimental paradigms, and computational analysis techniques that this approach brings to the table.
It paves the way for a "machine psychology" for generative artificial intelligence (AI) that goes beyond performance benchmarks.
arXiv Detail & Related papers (2023-03-24T13:24:41Z) - World Models and Predictive Coding for Cognitive and Developmental
Robotics: Frontiers and Challenges [51.92834011423463]
We focus on the two concepts of world models and predictive coding.
In neuroscience, predictive coding proposes that the brain continuously predicts its inputs and adapts to model its own dynamics and control behavior in its environment.
arXiv Detail & Related papers (2023-01-14T06:38:14Z) - Humans are not Boltzmann Distributions: Challenges and Opportunities for
Modelling Human Feedback and Interaction in Reinforcement Learning [13.64577704565643]
We argue that these models are too simplistic and that RL researchers need to develop more realistic human models to design and evaluate their algorithms.
This paper calls for research from different disciplines to address key questions about how humans provide feedback to AIs and how we can build more robust human-in-the-loop RL systems.
arXiv Detail & Related papers (2022-06-27T13:58:51Z) - Cognitive science as a source of forward and inverse models of human
decisions for robotics and control [13.502912109138249]
We look at how cognitive science can provide forward models of human decision-making.
We highlight approaches that synthesize blackbox and theory-driven modeling.
We aim to provide readers with a glimpse of the range of frameworks, methodologies, and actionable insights that lie at the intersection of cognitive science and control research.
arXiv Detail & Related papers (2021-09-01T00:28:28Z) - AGENT: A Benchmark for Core Psychological Reasoning [60.35621718321559]
Intuitive psychology is the ability to reason about hidden mental variables that drive observable actions.
Despite recent interest in machine agents that reason about other agents, it is not clear if such agents learn or hold the core psychology principles that drive human reasoning.
We present a benchmark consisting of procedurally generated 3D animations, AGENT, structured around four scenarios.
arXiv Detail & Related papers (2021-02-24T14:58:23Z) - Machine Common Sense [77.34726150561087]
Machine common sense remains a broad, potentially unbounded problem in artificial intelligence (AI)
This article deals with the aspects of modeling commonsense reasoning focusing on such domain as interpersonal interactions.
arXiv Detail & Related papers (2020-06-15T13:59:47Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.