Robust Regularized Low-Rank Matrix Models for Regression and
Classification
- URL: http://arxiv.org/abs/2205.07106v1
- Date: Sat, 14 May 2022 18:03:48 GMT
- Title: Robust Regularized Low-Rank Matrix Models for Regression and
Classification
- Authors: Hsin-Hsiung Huang, Feng Yu, Xing Fan, Teng Zhang
- Abstract summary: We propose a framework for matrix variate regression models based on a rank constraint, vector regularization (e.g., sparsity), and a general loss function.
We show that the algorithm is guaranteed to converge, all accumulation points of the algorithm have estimation errors in the order of $O(sqrtn)$ally and substantially attaining the minimax rate.
- Score: 14.698622796774634
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: While matrix variate regression models have been studied in many existing
works, classical statistical and computational methods for the analysis of the
regression coefficient estimation are highly affected by high dimensional and
noisy matrix-valued predictors. To address these issues, this paper proposes a
framework of matrix variate regression models based on a rank constraint,
vector regularization (e.g., sparsity), and a general loss function with three
special cases considered: ordinary matrix regression, robust matrix regression,
and matrix logistic regression. We also propose an alternating projected
gradient descent algorithm. Based on analyzing our objective functions on
manifolds with bounded curvature, we show that the algorithm is guaranteed to
converge, all accumulation points of the iterates have estimation errors in the
order of $O(1/\sqrt{n})$ asymptotically and substantially attaining the minimax
rate. Our theoretical analysis can be applied to general optimization problems
on manifolds with bounded curvature and can be considered an important
technical contribution to this work. We validate the proposed method through
simulation studies and real image data examples.
Related papers
- Meta-Learning with Generalized Ridge Regression: High-dimensional Asymptotics, Optimality and Hyper-covariance Estimation [14.194212772887699]
We consider meta-learning within the framework of high-dimensional random-effects linear models.
We show the precise behavior of the predictive risk for a new test task when the data dimension grows proportionally to the number of samples per task.
We propose and analyze an estimator inverse random regression coefficients based on data from the training tasks.
arXiv Detail & Related papers (2024-03-27T21:18:43Z) - A Novel Approach in Solving Stochastic Generalized Linear Regression via
Nonconvex Programming [1.6874375111244329]
This paper considers a generalized linear regression model as a problem with chance constraints.
The results of the proposed algorithm were over 1 to 2 percent better than the ordinary logistic regression model.
arXiv Detail & Related papers (2024-01-16T16:45:51Z) - Probabilistic Unrolling: Scalable, Inverse-Free Maximum Likelihood
Estimation for Latent Gaussian Models [69.22568644711113]
We introduce probabilistic unrolling, a method that combines Monte Carlo sampling with iterative linear solvers to circumvent matrix inversions.
Our theoretical analyses reveal that unrolling and backpropagation through the iterations of the solver can accelerate gradient estimation for maximum likelihood estimation.
In experiments on simulated and real data, we demonstrate that probabilistic unrolling learns latent Gaussian models up to an order of magnitude faster than gradient EM, with minimal losses in model performance.
arXiv Detail & Related papers (2023-06-05T21:08:34Z) - Vector-Valued Least-Squares Regression under Output Regularity
Assumptions [73.99064151691597]
We propose and analyse a reduced-rank method for solving least-squares regression problems with infinite dimensional output.
We derive learning bounds for our method, and study under which setting statistical performance is improved in comparison to full-rank method.
arXiv Detail & Related papers (2022-11-16T15:07:00Z) - Learning Graphical Factor Models with Riemannian Optimization [70.13748170371889]
This paper proposes a flexible algorithmic framework for graph learning under low-rank structural constraints.
The problem is expressed as penalized maximum likelihood estimation of an elliptical distribution.
We leverage geometries of positive definite matrices and positive semi-definite matrices of fixed rank that are well suited to elliptical models.
arXiv Detail & Related papers (2022-10-21T13:19:45Z) - Graph Polynomial Convolution Models for Node Classification of
Non-Homophilous Graphs [52.52570805621925]
We investigate efficient learning from higher-order graph convolution and learning directly from adjacency matrix for node classification.
We show that the resulting model lead to new graphs and residual scaling parameter.
We demonstrate that the proposed methods obtain improved accuracy for node-classification of non-homophilous parameters.
arXiv Detail & Related papers (2022-09-12T04:46:55Z) - Nonparametric Trace Regression in High Dimensions via Sign Series
Representation [13.37650464374017]
We develop a framework for nonparametric trace regression models via structured sign series representations of high dimensional functions.
In the context of matrix completion, our framework leads to a substantially richer model based on what we coin as the "sign rank" of a matrix.
arXiv Detail & Related papers (2021-05-04T22:20:00Z) - Benign Overfitting of Constant-Stepsize SGD for Linear Regression [122.70478935214128]
inductive biases are central in preventing overfitting empirically.
This work considers this issue in arguably the most basic setting: constant-stepsize SGD for linear regression.
We reflect on a number of notable differences between the algorithmic regularization afforded by (unregularized) SGD in comparison to ordinary least squares.
arXiv Detail & Related papers (2021-03-23T17:15:53Z) - Piecewise linear regression and classification [0.20305676256390928]
This paper proposes a method for solving multivariate regression and classification problems using piecewise linear predictors.
A Python implementation of the algorithm described in this paper is available at http://cse.lab.imtlucca.it/bemporad/parc.
arXiv Detail & Related papers (2021-03-10T17:07:57Z) - Understanding Implicit Regularization in Over-Parameterized Single Index
Model [55.41685740015095]
We design regularization-free algorithms for the high-dimensional single index model.
We provide theoretical guarantees for the induced implicit regularization phenomenon.
arXiv Detail & Related papers (2020-07-16T13:27:47Z) - Asymptotic Errors for Teacher-Student Convex Generalized Linear Models
(or : How to Prove Kabashima's Replica Formula) [23.15629681360836]
We prove an analytical formula for the reconstruction performance of convex generalized linear models.
We show that an analytical continuation may be carried out to extend the result to convex (non-strongly) problems.
We illustrate our claim with numerical examples on mainstream learning methods.
arXiv Detail & Related papers (2020-06-11T16:26:35Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.