A Comprehensive Survey on Model Quantization for Deep Neural Networks in
Image Classification
- URL: http://arxiv.org/abs/2205.07877v5
- Date: Mon, 23 Oct 2023 17:22:51 GMT
- Title: A Comprehensive Survey on Model Quantization for Deep Neural Networks in
Image Classification
- Authors: Babak Rokh, Ali Azarpeyvand, Alireza Khanteymoori
- Abstract summary: A promising approach is quantization, in which the full-precision values are stored in low bit-width precision.
We present a comprehensive survey of quantization concepts and methods, with a focus on image classification.
We explain the replacement of floating-point operations with low-cost bitwise operations in a quantized DNN and the sensitivity of different layers in quantization.
- Score: 0.0
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Recent advancements in machine learning achieved by Deep Neural Networks
(DNNs) have been significant. While demonstrating high accuracy, DNNs are
associated with a huge number of parameters and computations, which leads to
high memory usage and energy consumption. As a result, deploying DNNs on
devices with constrained hardware resources poses significant challenges. To
overcome this, various compression techniques have been widely employed to
optimize DNN accelerators. A promising approach is quantization, in which the
full-precision values are stored in low bit-width precision. Quantization not
only reduces memory requirements but also replaces high-cost operations with
low-cost ones. DNN quantization offers flexibility and efficiency in hardware
design, making it a widely adopted technique in various methods. Since
quantization has been extensively utilized in previous works, there is a need
for an integrated report that provides an understanding, analysis, and
comparison of different quantization approaches. Consequently, we present a
comprehensive survey of quantization concepts and methods, with a focus on
image classification. We describe clustering-based quantization methods and
explore the use of a scale factor parameter for approximating full-precision
values. Moreover, we thoroughly review the training of a quantized DNN,
including the use of a straight-through estimator and quantization
regularization. We explain the replacement of floating-point operations with
low-cost bitwise operations in a quantized DNN and the sensitivity of different
layers in quantization. Furthermore, we highlight the evaluation metrics for
quantization methods and important benchmarks in the image classification task.
We also present the accuracy of the state-of-the-art methods on CIFAR-10 and
ImageNet.
Related papers
- SQUAT: Stateful Quantization-Aware Training in Recurrent Spiking Neural Networks [1.0923877073891446]
Spiking neural networks (SNNs) share the goal of enhancing efficiency, but adopt an 'event-driven' approach to reduce the power consumption of neural network inference.
This paper introduces two QAT schemes for stateful neurons: (i) a uniform quantization strategy, an established method for weight quantization, and (ii) threshold-centered quantization.
Our results show that increasing the density of quantization levels around the firing threshold improves accuracy across several benchmark datasets.
arXiv Detail & Related papers (2024-04-15T03:07:16Z) - On-Chip Hardware-Aware Quantization for Mixed Precision Neural Networks [52.97107229149988]
We propose an On-Chip Hardware-Aware Quantization framework, performing hardware-aware mixed-precision quantization on deployed edge devices.
For efficiency metrics, we built an On-Chip Quantization Aware pipeline, which allows the quantization process to perceive the actual hardware efficiency of the quantization operator.
For accuracy metrics, we propose Mask-Guided Quantization Estimation technology to effectively estimate the accuracy impact of operators in the on-chip scenario.
arXiv Detail & Related papers (2023-09-05T04:39:34Z) - Learning Representations for CSI Adaptive Quantization and Feedback [51.14360605938647]
We propose an efficient method for adaptive quantization and feedback in frequency division duplexing systems.
Existing works mainly focus on the implementation of autoencoder (AE) neural networks for CSI compression.
We recommend two different methods: one based on a post training quantization and the second one in which the codebook is found during the training of the AE.
arXiv Detail & Related papers (2022-07-13T08:52:13Z) - Edge Inference with Fully Differentiable Quantized Mixed Precision
Neural Networks [1.131071436917293]
Quantizing parameters and operations to lower bit-precision offers substantial memory and energy savings for neural network inference.
This paper proposes a new quantization approach for mixed precision convolutional neural networks (CNNs) targeting edge-computing.
arXiv Detail & Related papers (2022-06-15T18:11:37Z) - Cluster-Promoting Quantization with Bit-Drop for Minimizing Network
Quantization Loss [61.26793005355441]
Cluster-Promoting Quantization (CPQ) finds the optimal quantization grids for neural networks.
DropBits is a new bit-drop technique that revises the standard dropout regularization to randomly drop bits instead of neurons.
We experimentally validate our method on various benchmark datasets and network architectures.
arXiv Detail & Related papers (2021-09-05T15:15:07Z) - Post-Training Quantization for Vision Transformer [85.57953732941101]
We present an effective post-training quantization algorithm for reducing the memory storage and computational costs of vision transformers.
We can obtain an 81.29% top-1 accuracy using DeiT-B model on ImageNet dataset with about 8-bit quantization.
arXiv Detail & Related papers (2021-06-27T06:27:22Z) - Fully Quantized Image Super-Resolution Networks [81.75002888152159]
We propose a Fully Quantized image Super-Resolution framework (FQSR) to jointly optimize efficiency and accuracy.
We apply our quantization scheme on multiple mainstream super-resolution architectures, including SRResNet, SRGAN and EDSR.
Our FQSR using low bits quantization can achieve on par performance compared with the full-precision counterparts on five benchmark datasets.
arXiv Detail & Related papers (2020-11-29T03:53:49Z) - MSP: An FPGA-Specific Mixed-Scheme, Multi-Precision Deep Neural Network
Quantization Framework [39.43144643349916]
This paper targets the commonly used FPGA devices as the hardware platforms for deep learning edge computing.
We propose a mixed-scheme DNN quantization method that incorporates both the linear and non-linear number systems for quantization.
We use a quantization method that supports multiple precisions along the intra-layer dimension, while the existing quantization methods apply multi-precision quantization along the inter-layer dimension.
arXiv Detail & Related papers (2020-09-16T04:24:18Z) - Optimal Quantization for Batch Normalization in Neural Network
Deployments and Beyond [18.14282813812512]
Batch Normalization (BN) poses a challenge for Quantized Neural Networks (QNNs)
We propose a novel method to quantize BN by converting an affine transformation of two floating points to a fixed-point operation with shared quantized scale.
Our method is verified by experiments at layer level on CIFAR and ImageNet datasets.
arXiv Detail & Related papers (2020-08-30T09:33:29Z) - AUSN: Approximately Uniform Quantization by Adaptively Superimposing
Non-uniform Distribution for Deep Neural Networks [0.7378164273177589]
Existing uniform and non-uniform quantization methods exhibit an inherent conflict between the representing range and representing resolution.
We propose a novel quantization method to quantize the weight and activation.
The key idea is to Approximate the Uniform quantization by Adaptively Superposing multiple Non-uniform quantized values, namely AUSN.
arXiv Detail & Related papers (2020-07-08T05:10:53Z) - Widening and Squeezing: Towards Accurate and Efficient QNNs [125.172220129257]
Quantization neural networks (QNNs) are very attractive to the industry because their extremely cheap calculation and storage overhead, but their performance is still worse than that of networks with full-precision parameters.
Most of existing methods aim to enhance performance of QNNs especially binary neural networks by exploiting more effective training techniques.
We address this problem by projecting features in original full-precision networks to high-dimensional quantization features.
arXiv Detail & Related papers (2020-02-03T04:11:13Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.