TOCH: Spatio-Temporal Object-to-Hand Correspondence for Motion
Refinement
- URL: http://arxiv.org/abs/2205.07982v3
- Date: Fri, 27 Oct 2023 11:32:26 GMT
- Title: TOCH: Spatio-Temporal Object-to-Hand Correspondence for Motion
Refinement
- Authors: Keyang Zhou, Bharat Lal Bhatnagar, Jan Eric Lenssen, Gerard Pons-Moll
- Abstract summary: We present TOCH, a method for refining incorrect 3D hand-object interaction sequences using a data prior.
We learn a latent manifold of plausible TOCH fields with a temporal denoising auto-encoder.
Experiments demonstrate that TOCH outperforms state-of-the-art 3D hand-object interaction models.
- Score: 42.3418874174372
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We present TOCH, a method for refining incorrect 3D hand-object interaction
sequences using a data prior. Existing hand trackers, especially those that
rely on very few cameras, often produce visually unrealistic results with
hand-object intersection or missing contacts. Although correcting such errors
requires reasoning about temporal aspects of interaction, most previous works
focus on static grasps and contacts. The core of our method are TOCH fields, a
novel spatio-temporal representation for modeling correspondences between hands
and objects during interaction. TOCH fields are a point-wise, object-centric
representation, which encode the hand position relative to the object.
Leveraging this novel representation, we learn a latent manifold of plausible
TOCH fields with a temporal denoising auto-encoder. Experiments demonstrate
that TOCH outperforms state-of-the-art 3D hand-object interaction models, which
are limited to static grasps and contacts. More importantly, our method
produces smooth interactions even before and after contact. Using a single
trained TOCH model, we quantitatively and qualitatively demonstrate its
usefulness for correcting erroneous sequences from off-the-shelf RGB/RGB-D
hand-object reconstruction methods and transferring grasps across objects.
Related papers
- NCRF: Neural Contact Radiance Fields for Free-Viewpoint Rendering of
Hand-Object Interaction [19.957593804898064]
We present a novel free-point rendering framework, Neural Contact Radiance Field ( NCRF), to reconstruct hand-object interactions from a sparse set of videos.
We jointly learn these key components where they mutually help and regularize each other with visual and geometric constraints.
Our approach outperforms the current state-of-the-art in terms of both rendering quality and pose estimation accuracy.
arXiv Detail & Related papers (2024-02-08T10:09:12Z) - Decaf: Monocular Deformation Capture for Face and Hand Interactions [77.75726740605748]
This paper introduces the first method that allows tracking human hands interacting with human faces in 3D from single monocular RGB videos.
We model hands as articulated objects inducing non-rigid face deformations during an active interaction.
Our method relies on a new hand-face motion and interaction capture dataset with realistic face deformations acquired with a markerless multi-view camera system.
arXiv Detail & Related papers (2023-09-28T17:59:51Z) - Novel-view Synthesis and Pose Estimation for Hand-Object Interaction
from Sparse Views [41.50710846018882]
We propose a neural rendering and pose estimation system for hand-object interaction from sparse views.
We first learn the shape and appearance prior knowledge of hands and objects separately with the neural representation.
During the online stage, we design a rendering-based joint model fitting framework to understand the dynamic hand-object interaction.
arXiv Detail & Related papers (2023-08-22T05:17:41Z) - InterTracker: Discovering and Tracking General Objects Interacting with
Hands in the Wild [40.489171608114574]
Existing methods rely on frame-based detectors to locate interacting objects.
We propose to leverage hand-object interaction to track interactive objects.
Our proposed method outperforms the state-of-the-art methods.
arXiv Detail & Related papers (2023-08-06T09:09:17Z) - Learning Explicit Contact for Implicit Reconstruction of Hand-held
Objects from Monocular Images [59.49985837246644]
We show how to model contacts in an explicit way to benefit the implicit reconstruction of hand-held objects.
In the first part, we propose a new subtask of directly estimating 3D hand-object contacts from a single image.
In the second part, we introduce a novel method to diffuse estimated contact states from the hand mesh surface to nearby 3D space.
arXiv Detail & Related papers (2023-05-31T17:59:26Z) - S$^2$Contact: Graph-based Network for 3D Hand-Object Contact Estimation
with Semi-Supervised Learning [70.72037296392642]
We propose a novel semi-supervised framework that allows us to learn contact from monocular images.
Specifically, we leverage visual and geometric consistency constraints in large-scale datasets for generating pseudo-labels.
We show benefits from using a contact map that rules hand-object interactions to produce more accurate reconstructions.
arXiv Detail & Related papers (2022-08-01T14:05:23Z) - Monocular 3D Reconstruction of Interacting Hands via Collision-Aware
Factorized Refinements [96.40125818594952]
We make the first attempt to reconstruct 3D interacting hands from monocular single RGB images.
Our method can generate 3D hand meshes with both precise 3D poses and minimal collisions.
arXiv Detail & Related papers (2021-11-01T08:24:10Z) - Leveraging Photometric Consistency over Time for Sparsely Supervised
Hand-Object Reconstruction [118.21363599332493]
We present a method to leverage photometric consistency across time when annotations are only available for a sparse subset of frames in a video.
Our model is trained end-to-end on color images to jointly reconstruct hands and objects in 3D by inferring their poses.
We achieve state-of-the-art results on 3D hand-object reconstruction benchmarks and demonstrate that our approach allows us to improve the pose estimation accuracy.
arXiv Detail & Related papers (2020-04-28T12:03:14Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.