Graph Adaptive Semantic Transfer for Cross-domain Sentiment
Classification
- URL: http://arxiv.org/abs/2205.08772v1
- Date: Wed, 18 May 2022 07:47:01 GMT
- Title: Graph Adaptive Semantic Transfer for Cross-domain Sentiment
Classification
- Authors: Kai Zhang, Qi Liu, Zhenya Huang, Mingyue Cheng, Kun Zhang, Mengdi
Zhang, Wei Wu, Enhong Chen
- Abstract summary: Cross-domain sentiment classification (CDSC) aims to use the transferable semantics learned from the source domain to predict the sentiment of reviews in the unlabeled target domain.
We present Graph Adaptive Semantic Transfer (GAST) model, an adaptive syntactic graph embedding method that is able to learn domain-invariant semantics from both word sequences and syntactic graphs.
- Score: 68.06496970320595
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Cross-domain sentiment classification (CDSC) aims to use the transferable
semantics learned from the source domain to predict the sentiment of reviews in
the unlabeled target domain. Existing studies in this task attach more
attention to the sequence modeling of sentences while largely ignoring the rich
domain-invariant semantics embedded in graph structures (i.e., the
part-of-speech tags and dependency relations). As an important aspect of
exploring characteristics of language comprehension, adaptive graph
representations have played an essential role in recent years. To this end, in
the paper, we aim to explore the possibility of learning invariant semantic
features from graph-like structures in CDSC. Specifically, we present Graph
Adaptive Semantic Transfer (GAST) model, an adaptive syntactic graph embedding
method that is able to learn domain-invariant semantics from both word
sequences and syntactic graphs. More specifically, we first raise a
POS-Transformer module to extract sequential semantic features from the word
sequences as well as the part-of-speech tags. Then, we design a Hybrid Graph
Attention (HGAT) module to generate syntax-based semantic features by
considering the transferable dependency relations. Finally, we devise an
Integrated aDaptive Strategy (IDS) to guide the joint learning process of both
modules. Extensive experiments on four public datasets indicate that GAST
achieves comparable effectiveness to a range of state-of-the-art models.
Related papers
- Unleashing the Potential of Text-attributed Graphs: Automatic Relation Decomposition via Large Language Models [31.443478448031886]
RoSE (Relation-oriented Semantic Edge-decomposition) is a novel framework that decomposes the graph structure by analyzing raw text attributes.
Our framework significantly enhances node classification performance across various datasets, with improvements of up to 16% on the Wisconsin dataset.
arXiv Detail & Related papers (2024-05-28T20:54:47Z) - Advancing Incremental Few-shot Semantic Segmentation via Semantic-guided
Relation Alignment and Adaptation [98.51938442785179]
Incremental few-shot semantic segmentation aims to incrementally extend a semantic segmentation model to novel classes.
This task faces a severe semantic-aliasing issue between base and novel classes due to data imbalance.
We propose the Semantic-guided Relation Alignment and Adaptation (SRAA) method that fully considers the guidance of prior semantic information.
arXiv Detail & Related papers (2023-05-18T10:40:52Z) - Progressive Semantic-Visual Mutual Adaption for Generalized Zero-Shot
Learning [74.48337375174297]
Generalized Zero-Shot Learning (GZSL) identifies unseen categories by knowledge transferred from the seen domain.
We deploy the dual semantic-visual transformer module (DSVTM) to progressively model the correspondences between prototypes and visual features.
DSVTM devises an instance-motivated semantic encoder that learns instance-centric prototypes to adapt to different images, enabling the recast of the unmatched semantic-visual pair into the matched one.
arXiv Detail & Related papers (2023-03-27T15:21:43Z) - Prototype-based Embedding Network for Scene Graph Generation [105.97836135784794]
Current Scene Graph Generation (SGG) methods explore contextual information to predict relationships among entity pairs.
Due to the diverse visual appearance of numerous possible subject-object combinations, there is a large intra-class variation within each predicate category.
Prototype-based Embedding Network (PE-Net) models entities/predicates with prototype-aligned compact and distinctive representations.
PL is introduced to help PE-Net efficiently learn such entitypredicate matching, and Prototype Regularization (PR) is devised to relieve the ambiguous entity-predicate matching.
arXiv Detail & Related papers (2023-03-13T13:30:59Z) - Syntax-Guided Domain Adaptation for Aspect-based Sentiment Analysis [23.883810236153757]
Domain adaptation is a popular solution to alleviate the data deficiency issue in new domains by transferring common knowledge across domains.
We propose a novel Syntax-guided Domain Adaptation Model, named SDAM, for more effective cross-domain ABSA.
Our model consistently outperforms the state-of-the-art baselines with respect to Micro-F1 metric for the cross-domain End2End ABSA task.
arXiv Detail & Related papers (2022-11-10T10:09:33Z) - Unsupervised Domain Adaptation for Point Cloud Semantic Segmentation via
Graph Matching [14.876681993079062]
We propose a graph-based framework to explore the local-level feature alignment between the two domains.
We also formulate a category-guided contrastive loss to guide the segmentation model to learn discriminative features on the target domain.
arXiv Detail & Related papers (2022-08-09T02:30:15Z) - Graphonomy: Universal Image Parsing via Graph Reasoning and Transfer [140.72439827136085]
We propose a graph reasoning and transfer learning framework named "Graphonomy"
It incorporates human knowledge and label taxonomy into the intermediate graph representation learning beyond local convolutions.
It learns the global and structured semantic coherency in multiple domains via semantic-aware graph reasoning and transfer.
arXiv Detail & Related papers (2021-01-26T08:19:03Z) - Learning the Implicit Semantic Representation on Graph-Structured Data [57.670106959061634]
Existing representation learning methods in graph convolutional networks are mainly designed by describing the neighborhood of each node as a perceptual whole.
We propose a Semantic Graph Convolutional Networks (SGCN) that explores the implicit semantics by learning latent semantic-paths in graphs.
arXiv Detail & Related papers (2021-01-16T16:18:43Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.