LogiGAN: Learning Logical Reasoning via Adversarial Pre-training
- URL: http://arxiv.org/abs/2205.08794v1
- Date: Wed, 18 May 2022 08:46:49 GMT
- Title: LogiGAN: Learning Logical Reasoning via Adversarial Pre-training
- Authors: Xinyu Pi, Wanjun Zhong, Yan Gao, Nan Duan, Jian-Guang Lou
- Abstract summary: We present LogiGAN, an unsupervised adversarial pre-training framework for improving logical reasoning abilities of language models.
Inspired by the facilitation effect of reflective thinking in human learning, we simulate the learning-thinking process with an adversarial Generator-Verifier architecture.
Both base and large size language models pre-trained with LogiGAN demonstrate obvious performance improvement on 12 datasets.
- Score: 58.11043285534766
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We present LogiGAN, an unsupervised adversarial pre-training framework for
improving logical reasoning abilities of language models. Upon automatic
identifying logical reasoning phenomena in massive text corpus via detection
heuristics, we train language models to predict the masked-out logical
statements. Inspired by the facilitation effect of reflective thinking in human
learning, we analogically simulate the learning-thinking process with an
adversarial Generator-Verifier architecture to assist logic learning. LogiGAN
implements a novel sequential GAN approach that (a) circumvents the
non-differentiable challenge of the sequential GAN by leveraging the Generator
as a sentence-level generative likelihood scorer with a learning objective of
reaching scoring consensus with the Verifier; (b) is computationally feasible
for large-scale pre-training with arbitrary target length. Both base and large
size language models pre-trained with LogiGAN demonstrate obvious performance
improvement on 12 datasets requiring general reasoning abilities, revealing the
fundamental role of logic in broad reasoning, as well as the effectiveness of
LogiGAN. Ablation studies on LogiGAN components reveal the relative
orthogonality between linguistic and logic abilities and suggest that
reflective thinking's facilitation effect might also generalize to machine
learning.
Related papers
- Reversal of Thought: Enhancing Large Language Models with Preference-Guided Reverse Reasoning Warm-up [9.42385235462794]
Large language models (LLMs) have shown remarkable performance in reasoning tasks but face limitations in mathematical and complex logical reasoning.
We propose Reversal of Thought (RoT), a novel framework aimed at enhancing the logical reasoning abilities of LLMs.
RoT utilizes a Preference-Guided Reverse Reasoning warm-up strategy, which integrates logical symbols for pseudocode planning.
arXiv Detail & Related papers (2024-10-16T07:44:28Z) - Proof of Thought : Neurosymbolic Program Synthesis allows Robust and Interpretable Reasoning [1.3003982724617653]
Large Language Models (LLMs) have revolutionized natural language processing, yet they struggle with inconsistent reasoning.
This research introduces Proof of Thought, a framework that enhances the reliability and transparency of LLM outputs.
Key contributions include a robust type system with sort management for enhanced logical integrity, explicit representation of rules for clear distinction between factual and inferential knowledge.
arXiv Detail & Related papers (2024-09-25T18:35:45Z) - Enhancing Logical Reasoning in Large Language Models through Graph-based Synthetic Data [53.433309883370974]
This work explores the potential and limitations of using graph-based synthetic reasoning data as training signals to enhance Large Language Models' reasoning capabilities.
Our experiments, conducted on two established natural language reasoning tasks, demonstrate that supervised fine-tuning with synthetic graph-based reasoning data effectively enhances LLMs' reasoning performance without compromising their effectiveness on other standard evaluation benchmarks.
arXiv Detail & Related papers (2024-09-19T03:39:09Z) - Logic Agent: Enhancing Validity with Logic Rule Invocation [24.815341366820753]
Chain-of-Thought prompting has emerged as a pivotal technique for augmenting the inferential capabilities of language models during reasoning tasks.
This paper introduces the Logic Agent (LA), an agent-based framework aimed at enhancing the validity of reasoning processes in Large Language Models.
arXiv Detail & Related papers (2024-04-28T10:02:28Z) - Empower Nested Boolean Logic via Self-Supervised Curriculum Learning [67.46052028752327]
We find that any pre-trained language models even including large language models only behave like a random selector in the face of multi-nested logic.
To empower language models with this fundamental capability, this paper proposes a new self-supervised learning method textitCurriculum Logical Reasoning (textscClr)
arXiv Detail & Related papers (2023-10-09T06:54:02Z) - Towards LogiGLUE: A Brief Survey and A Benchmark for Analyzing Logical Reasoning Capabilities of Language Models [56.34029644009297]
Large language models (LLMs) have demonstrated the ability to overcome various limitations of formal Knowledge Representation (KR) systems.
LLMs excel most in abductive reasoning, followed by deductive reasoning, while they are least effective at inductive reasoning.
We study single-task training, multi-task training, and "chain-of-thought" knowledge distillation fine-tuning technique to assess the performance of model.
arXiv Detail & Related papers (2023-10-02T01:00:50Z) - Modeling Hierarchical Reasoning Chains by Linking Discourse Units and
Key Phrases for Reading Comprehension [80.99865844249106]
We propose a holistic graph network (HGN) which deals with context at both discourse level and word level, as the basis for logical reasoning.
Specifically, node-level and type-level relations, which can be interpreted as bridges in the reasoning process, are modeled by a hierarchical interaction mechanism.
arXiv Detail & Related papers (2023-06-21T07:34:27Z) - In-Context Analogical Reasoning with Pre-Trained Language Models [10.344428417489237]
We explore the use of intuitive language-based abstractions to support analogy in AI systems.
Specifically, we apply large pre-trained language models (PLMs) to visual Raven's Progressive Matrices ( RPM)
We find that PLMs exhibit a striking capacity for zero-shot relational reasoning, exceeding human performance and nearing supervised vision-based methods.
arXiv Detail & Related papers (2023-05-28T04:22:26Z) - Exploring Self-supervised Logic-enhanced Training for Large Language Models [59.227222647741094]
In this paper, we make the first attempt to investigate the feasibility of incorporating logical knowledge through self-supervised post-training.
We devise an auto-regressive objective variant of MERIt and integrate it with two LLM series, i.e., FLAN-T5 and LLaMA, with parameter size ranging from 3 billion to 13 billion.
The results on two challenging logical reasoning benchmarks demonstrate the effectiveness of LogicLLM.
arXiv Detail & Related papers (2023-05-23T06:13:10Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.