Representation Learning for Content-Sensitive Anomaly Detection in
Industrial Networks
- URL: http://arxiv.org/abs/2205.08953v1
- Date: Wed, 20 Apr 2022 09:22:41 GMT
- Title: Representation Learning for Content-Sensitive Anomaly Detection in
Industrial Networks
- Authors: Fabian Kopp
- Abstract summary: This thesis proposes a framework to learn spatial-temporal aspects of raw network traffic in an unsupervised and protocol-agnostic manner.
The learned representations are used to measure the effect on the results of a subsequent anomaly detection.
- Score: 0.0
- License: http://creativecommons.org/licenses/by-sa/4.0/
- Abstract: Using a convGRU-based autoencoder, this thesis proposes a framework to learn
spatial-temporal aspects of raw network traffic in an unsupervised and
protocol-agnostic manner. The learned representations are used to measure the
effect on the results of a subsequent anomaly detection and are compared to the
application without the extracted features. The evaluation showed, that the
anomaly detection could not effectively be enhanced when applied on compressed
traffic fragments for the context of network intrusion detection. Yet, the
trained autoencoder successfully generates a compressed representation (code)
of the network traffic, which hold spatial and temporal information. Based on
the models residual loss, the autoencoder is also capable of detecting
anomalies by itself. Lastly, an approach for a kind of model interpretability
(LRP) was investigated in order to identify relevant areas within the raw input
data, which is used to enrich alerts generated by an anomaly detection method.
Related papers
- Interpretable Anomaly Detection in Cellular Networks by Learning
Concepts in Variational Autoencoders [8.612111588129167]
This paper addresses the challenges of detecting anomalies in cellular networks in an interpretable way.
We propose a new approach using variational autoencoders (VAEs) that learn interpretable representations of the latent space for each Key Performance Indicator (KPI) in the dataset.
arXiv Detail & Related papers (2023-06-28T05:50:17Z) - A Novel Self-Supervised Learning-Based Anomaly Node Detection Method
Based on an Autoencoder in Wireless Sensor Networks [4.249028315152528]
In this paper, a self-supervised learning-based anomaly node detection method based on an autoencoder is designed.
This method integrates temporal WSN data flow feature extraction, spatial position feature extraction and intermodal WSN correlation feature extraction.
Experiments show that the designed method outperforms the baselines, and the F1 score reaches 90.6%.
arXiv Detail & Related papers (2022-12-26T01:54:02Z) - Anomaly Detection with Adversarially Learned Perturbations of Latent
Space [9.473040033926264]
Anomaly detection is to identify samples that do not conform to the distribution of the normal data.
In this work, we have designed an adversarial framework consisting of two competing components, an Adversarial Distorter, and an Autoencoder.
The proposed method outperforms the existing state-of-the-art methods in anomaly detection on image and video datasets.
arXiv Detail & Related papers (2022-07-03T19:32:00Z) - Self-Supervised Training with Autoencoders for Visual Anomaly Detection [61.62861063776813]
We focus on a specific use case in anomaly detection where the distribution of normal samples is supported by a lower-dimensional manifold.
We adapt a self-supervised learning regime that exploits discriminative information during training but focuses on the submanifold of normal examples.
We achieve a new state-of-the-art result on the MVTec AD dataset -- a challenging benchmark for visual anomaly detection in the manufacturing domain.
arXiv Detail & Related papers (2022-06-23T14:16:30Z) - DAAIN: Detection of Anomalous and Adversarial Input using Normalizing
Flows [52.31831255787147]
We introduce a novel technique, DAAIN, to detect out-of-distribution (OOD) inputs and adversarial attacks (AA)
Our approach monitors the inner workings of a neural network and learns a density estimator of the activation distribution.
Our model can be trained on a single GPU making it compute efficient and deployable without requiring specialized accelerators.
arXiv Detail & Related papers (2021-05-30T22:07:13Z) - Feature Encoding with AutoEncoders for Weakly-supervised Anomaly
Detection [46.76220474310698]
Weakly-supervised anomaly detection aims at learning an anomaly detector from a limited amount of labeled data and abundant unlabeled data.
Recent works build deep neural networks for anomaly detection by discriminatively mapping the normal samples and abnormal samples to different regions in the feature space or fitting different distributions.
This paper proposes a novel strategy to transform the input data into a more meaningful representation that could be used for anomaly detection.
arXiv Detail & Related papers (2021-05-22T16:23:05Z) - Anomaly Detection on Attributed Networks via Contrastive Self-Supervised
Learning [50.24174211654775]
We present a novel contrastive self-supervised learning framework for anomaly detection on attributed networks.
Our framework fully exploits the local information from network data by sampling a novel type of contrastive instance pair.
A graph neural network-based contrastive learning model is proposed to learn informative embedding from high-dimensional attributes and local structure.
arXiv Detail & Related papers (2021-02-27T03:17:20Z) - DNS Covert Channel Detection via Behavioral Analysis: a Machine Learning
Approach [0.09176056742068815]
We propose an effective covert channel detection method based on the analysis of DNS network data passively extracted from a network monitoring system.
The proposed solution has been evaluated over a 15-day-long experimental session with the injection of traffic that covers the most relevant exfiltration and tunneling attacks.
arXiv Detail & Related papers (2020-10-04T13:28:28Z) - Unsupervised Anomaly Detection with Adversarial Mirrored AutoEncoders [51.691585766702744]
We propose a variant of Adversarial Autoencoder which uses a mirrored Wasserstein loss in the discriminator to enforce better semantic-level reconstruction.
We put forward an alternative measure of anomaly score to replace the reconstruction-based metric.
Our method outperforms the current state-of-the-art methods for anomaly detection on several OOD detection benchmarks.
arXiv Detail & Related papers (2020-03-24T08:26:58Z) - BiDet: An Efficient Binarized Object Detector [96.19708396510894]
We propose a binarized neural network learning method called BiDet for efficient object detection.
Our BiDet fully utilizes the representational capacity of the binary neural networks for object detection by redundancy removal.
Our method outperforms the state-of-the-art binary neural networks by a sizable margin.
arXiv Detail & Related papers (2020-03-09T08:16:16Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.