"I'm sorry to hear that": Finding New Biases in Language Models with a
Holistic Descriptor Dataset
- URL: http://arxiv.org/abs/2205.09209v2
- Date: Thu, 27 Oct 2022 21:02:24 GMT
- Title: "I'm sorry to hear that": Finding New Biases in Language Models with a
Holistic Descriptor Dataset
- Authors: Eric Michael Smith, Melissa Hall, Melanie Kambadur, Eleonora Presani,
Adina Williams
- Abstract summary: We present a new, more inclusive bias measurement dataset, HolisticBias, which includes nearly 600 descriptor terms across 13 different demographic axes.
HolisticBias was assembled in a participatory process including experts and community members with lived experience of these terms.
We demonstrate that HolisticBias is effective at measuring previously undetectable biases in token likelihoods from language models.
- Score: 12.000335510088648
- License: http://creativecommons.org/licenses/by-sa/4.0/
- Abstract: As language models grow in popularity, it becomes increasingly important to
clearly measure all possible markers of demographic identity in order to avoid
perpetuating existing societal harms. Many datasets for measuring bias
currently exist, but they are restricted in their coverage of demographic axes
and are commonly used with preset bias tests that presuppose which types of
biases models can exhibit. In this work, we present a new, more inclusive bias
measurement dataset, HolisticBias, which includes nearly 600 descriptor terms
across 13 different demographic axes. HolisticBias was assembled in a
participatory process including experts and community members with lived
experience of these terms. These descriptors combine with a set of bias
measurement templates to produce over 450,000 unique sentence prompts, which we
use to explore, identify, and reduce novel forms of bias in several generative
models. We demonstrate that HolisticBias is effective at measuring previously
undetectable biases in token likelihoods from language models, as well as in an
offensiveness classifier. We will invite additions and amendments to the
dataset, which we hope will serve as a basis for more easy-to-use and
standardized methods for evaluating bias in NLP models.
Related papers
- Editable Fairness: Fine-Grained Bias Mitigation in Language Models [52.66450426729818]
We propose a novel debiasing approach, Fairness Stamp (FAST), which enables fine-grained calibration of individual social biases.
FAST surpasses state-of-the-art baselines with superior debiasing performance.
This highlights the potential of fine-grained debiasing strategies to achieve fairness in large language models.
arXiv Detail & Related papers (2024-08-07T17:14:58Z) - VLBiasBench: A Comprehensive Benchmark for Evaluating Bias in Large Vision-Language Model [72.13121434085116]
VLBiasBench is a benchmark aimed at evaluating biases in Large Vision-Language Models (LVLMs)
We construct a dataset encompassing nine distinct categories of social biases, including age, disability status, gender, nationality, physical appearance, race, religion, profession, social economic status and two intersectional bias categories (race x gender, and race x social economic status)
We conduct extensive evaluations on 15 open-source models as well as one advanced closed-source model, providing some new insights into the biases revealing from these models.
arXiv Detail & Related papers (2024-06-20T10:56:59Z) - Leveraging Prototypical Representations for Mitigating Social Bias without Demographic Information [50.29934517930506]
DAFair is a novel approach to address social bias in language models.
We leverage prototypical demographic texts and incorporate a regularization term during the fine-tuning process to mitigate bias.
arXiv Detail & Related papers (2024-03-14T15:58:36Z) - ROBBIE: Robust Bias Evaluation of Large Generative Language Models [27.864027322486375]
Different prompt-based datasets can be used to measure social bias across multiple text domains and demographic axes.
We compare 6 different prompt-based bias and toxicity metrics across 12 demographic axes and 5 families of generative LLMs.
We conduct a comprehensive study of how well 3 bias/toxicity mitigation techniques perform across our suite of measurements.
arXiv Detail & Related papers (2023-11-29T23:03:04Z) - Fast Model Debias with Machine Unlearning [54.32026474971696]
Deep neural networks might behave in a biased manner in many real-world scenarios.
Existing debiasing methods suffer from high costs in bias labeling or model re-training.
We propose a fast model debiasing framework (FMD) which offers an efficient approach to identify, evaluate and remove biases.
arXiv Detail & Related papers (2023-10-19T08:10:57Z) - Exposing Bias in Online Communities through Large-Scale Language Models [3.04585143845864]
This work uses the flaw of bias in language models to explore the biases of six different online communities.
The bias of the resulting models is evaluated by prompting the models with different demographics and comparing the sentiment and toxicity values of these generations.
This work not only affirms how easily bias is absorbed from training data but also presents a scalable method to identify and compare the bias of different datasets or communities.
arXiv Detail & Related papers (2023-06-04T08:09:26Z) - MultiModal Bias: Introducing a Framework for Stereotypical Bias
Assessment beyond Gender and Race in Vision Language Models [40.12132844347926]
We provide a visual and textual bias benchmark called MMBias, consisting of around 3,800 images and phrases covering 14 population subgroups.
We utilize this dataset to assess bias in several prominent self supervised multimodal models, including CLIP, ALBEF, and ViLT.
We introduce a debiasing method designed specifically for such large pre-trained models that can be applied as a post-processing step to mitigate bias.
arXiv Detail & Related papers (2023-03-16T17:36:37Z) - Debiasing Vision-Language Models via Biased Prompts [79.04467131711775]
We propose a general approach for debiasing vision-language foundation models by projecting out biased directions in the text embedding.
We show that debiasing only the text embedding with a calibrated projection matrix suffices to yield robust classifiers and fair generative models.
arXiv Detail & Related papers (2023-01-31T20:09:33Z) - An Analysis of Social Biases Present in BERT Variants Across Multiple
Languages [0.0]
We investigate the bias present in monolingual BERT models across a diverse set of languages.
We propose a template-based method to measure any kind of bias, based on sentence pseudo-likelihood.
We conclude that current methods of probing for bias are highly language-dependent.
arXiv Detail & Related papers (2022-11-25T23:38:08Z) - Balancing out Bias: Achieving Fairness Through Training Reweighting [58.201275105195485]
Bias in natural language processing arises from models learning characteristics of the author such as gender and race.
Existing methods for mitigating and measuring bias do not directly account for correlations between author demographics and linguistic variables.
This paper introduces a very simple but highly effective method for countering bias using instance reweighting.
arXiv Detail & Related papers (2021-09-16T23:40:28Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.