Simplifying Node Classification on Heterophilous Graphs with Compatible
Label Propagation
- URL: http://arxiv.org/abs/2205.09389v1
- Date: Thu, 19 May 2022 08:34:34 GMT
- Title: Simplifying Node Classification on Heterophilous Graphs with Compatible
Label Propagation
- Authors: Zhiqiang Zhong and Sergey Ivanov and Jun Pang
- Abstract summary: We show that a well-known graph algorithm, Label Propagation, combined with a shallow neural network can achieve comparable performance to GNNs in semi-supervised node classification on graphs with high homophily.
In this paper, we show that this approach falls short on graphs with low homophily, where nodes often connect to the nodes of the opposite classes.
Our algorithm first learns the class compatibility matrix and then aggregates label predictions using LP algorithm weighted by class compatibilities.
- Score: 6.071760028190454
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Graph Neural Networks (GNNs) have been predominant for graph learning tasks;
however, recent studies showed that a well-known graph algorithm, Label
Propagation (LP), combined with a shallow neural network can achieve comparable
performance to GNNs in semi-supervised node classification on graphs with high
homophily. In this paper, we show that this approach falls short on graphs with
low homophily, where nodes often connect to the nodes of the opposite classes.
To overcome this, we carefully design a combination of a base predictor with LP
algorithm that enjoys a closed-form solution as well as convergence guarantees.
Our algorithm first learns the class compatibility matrix and then aggregates
label predictions using LP algorithm weighted by class compatibilities. On a
wide variety of benchmarks, we show that our approach achieves the leading
performance on graphs with various levels of homophily. Meanwhile, it has
orders of magnitude fewer parameters and requires less execution time.
Empirical evaluations demonstrate that simple adaptations of LP can be
competitive in semi-supervised node classification in both homophily and
heterophily regimes.
Related papers
- Heterophily-Based Graph Neural Network for Imbalanced Classification [19.51668009720269]
We introduce a unique approach that tackles imbalanced classification on graphs by considering graph heterophily.
We propose Fast Im-GBK, which integrates an imbalance classification strategy with heterophily-aware GNNs.
Our experiments on real-world graphs demonstrate our model's superiority in classification performance and efficiency for node classification tasks.
arXiv Detail & Related papers (2023-10-12T21:19:47Z) - Pseudo Contrastive Learning for Graph-based Semi-supervised Learning [67.37572762925836]
Pseudo Labeling is a technique used to improve the performance of Graph Neural Networks (GNNs)
We propose a general framework for GNNs, termed Pseudo Contrastive Learning (PCL)
arXiv Detail & Related papers (2023-02-19T10:34:08Z) - Optimal Propagation for Graph Neural Networks [51.08426265813481]
We propose a bi-level optimization approach for learning the optimal graph structure.
We also explore a low-rank approximation model for further reducing the time complexity.
arXiv Detail & Related papers (2022-05-06T03:37:00Z) - Exploiting Neighbor Effect: Conv-Agnostic GNNs Framework for Graphs with
Heterophily [58.76759997223951]
We propose a new metric based on von Neumann entropy to re-examine the heterophily problem of GNNs.
We also propose a Conv-Agnostic GNN framework (CAGNNs) to enhance the performance of most GNNs on heterophily datasets.
arXiv Detail & Related papers (2022-03-19T14:26:43Z) - Neighborhood Random Walk Graph Sampling for Regularized Bayesian Graph
Convolutional Neural Networks [0.6236890292833384]
In this paper, we propose a novel algorithm called Bayesian Graph Convolutional Network using Neighborhood Random Walk Sampling (BGCN-NRWS)
BGCN-NRWS uses a Markov Chain Monte Carlo (MCMC) based graph sampling algorithm utilizing graph structure, reduces overfitting by using a variational inference layer, and yields consistently competitive classification results compared to the state-of-the-art in semi-supervised node classification.
arXiv Detail & Related papers (2021-12-14T20:58:27Z) - Graph Neural Networks with Feature and Structure Aware Random Walk [7.143879014059894]
We show that in typical heterphilous graphs, the edges may be directed, and whether to treat the edges as is or simply make them undirected greatly affects the performance of the GNN models.
We develop a model that adaptively learns the directionality of the graph, and exploits the underlying long-distance correlations between nodes.
arXiv Detail & Related papers (2021-11-19T08:54:21Z) - Is Homophily a Necessity for Graph Neural Networks? [50.959340355849896]
Graph neural networks (GNNs) have shown great prowess in learning representations suitable for numerous graph-based machine learning tasks.
GNNs are widely believed to work well due to the homophily assumption ("like attracts like"), and fail to generalize to heterophilous graphs where dissimilar nodes connect.
Recent works design new architectures to overcome such heterophily-related limitations, citing poor baseline performance and new architecture improvements on a few heterophilous graph benchmark datasets as evidence for this notion.
In our experiments, we empirically find that standard graph convolutional networks (GCNs) can actually achieve better performance than
arXiv Detail & Related papers (2021-06-11T02:44:00Z) - Beyond Low-Pass Filters: Adaptive Feature Propagation on Graphs [6.018995094882323]
Graph neural networks (GNNs) have been extensively studied for prediction tasks on graphs.
Most GNNs assume local homophily, i.e., strong similarities in localneighborhoods.
We propose a flexible GNN model, which is capable of handling any graphs without beingrestricted by their underlying homophily.
arXiv Detail & Related papers (2021-03-26T00:35:36Z) - Scalable Graph Neural Networks for Heterogeneous Graphs [12.44278942365518]
Graph neural networks (GNNs) are a popular class of parametric model for learning over graph-structured data.
Recent work has argued that GNNs primarily use the graph for feature smoothing, and have shown competitive results on benchmark tasks.
In this work, we ask whether these results can be extended to heterogeneous graphs, which encode multiple types of relationship between different entities.
arXiv Detail & Related papers (2020-11-19T06:03:35Z) - Sequential Graph Convolutional Network for Active Learning [53.99104862192055]
We propose a novel pool-based Active Learning framework constructed on a sequential Graph Convolution Network (GCN)
With a small number of randomly sampled images as seed labelled examples, we learn the parameters of the graph to distinguish labelled vs unlabelled nodes.
We exploit these characteristics of GCN to select the unlabelled examples which are sufficiently different from labelled ones.
arXiv Detail & Related papers (2020-06-18T00:55:10Z) - Graph Inference Learning for Semi-supervised Classification [50.55765399527556]
We propose a Graph Inference Learning framework to boost the performance of semi-supervised node classification.
For learning the inference process, we introduce meta-optimization on structure relations from training nodes to validation nodes.
Comprehensive evaluations on four benchmark datasets demonstrate the superiority of our proposed GIL when compared against state-of-the-art methods.
arXiv Detail & Related papers (2020-01-17T02:52:30Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.