An Artificial Neural Network Functionalized by Evolution
- URL: http://arxiv.org/abs/2205.10118v1
- Date: Mon, 16 May 2022 14:49:58 GMT
- Title: An Artificial Neural Network Functionalized by Evolution
- Authors: Fabien Furfaro and Avner Bar-Hen and Geoffroy Berthelot
- Abstract summary: We propose a hybrid model which combines the tensor calculus of feed-forward neural networks with Pseudo-Darwinian mechanisms.
This allows for finding topologies that are well adapted for elaboration of strategies, control problems or pattern recognition tasks.
In particular, the model can provide adapted topologies at early evolutionary stages, and'structural convergence', which can found applications in robotics, big-data and artificial life.
- Score: 2.0625936401496237
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: The topology of artificial neural networks has a significant effect on their
performance. Characterizing efficient topology is a field of promising research
in Artificial Intelligence. However, it is not a trivial task and it is mainly
experimented on through convolutional neural networks. We propose a hybrid
model which combines the tensor calculus of feed-forward neural networks with
Pseudo-Darwinian mechanisms. This allows for finding topologies that are well
adapted for elaboration of strategies, control problems or pattern recognition
tasks. In particular, the model can provide adapted topologies at early
evolutionary stages, and 'structural convergence', which can found applications
in robotics, big-data and artificial life.
Related papers
- Contrastive Learning in Memristor-based Neuromorphic Systems [55.11642177631929]
Spiking neural networks have become an important family of neuron-based models that sidestep many of the key limitations facing modern-day backpropagation-trained deep networks.
In this work, we design and investigate a proof-of-concept instantiation of contrastive-signal-dependent plasticity (CSDP), a neuromorphic form of forward-forward-based, backpropagation-free learning.
arXiv Detail & Related papers (2024-09-17T04:48:45Z) - Message Passing Variational Autoregressive Network for Solving Intractable Ising Models [6.261096199903392]
Many deep neural networks have been used to solve Ising models, including autoregressive neural networks, convolutional neural networks, recurrent neural networks, and graph neural networks.
Here we propose a variational autoregressive architecture with a message passing mechanism, which can effectively utilize the interactions between spin variables.
The new network trained under an annealing framework outperforms existing methods in solving several prototypical Ising spin Hamiltonians, especially for larger spin systems at low temperatures.
arXiv Detail & Related papers (2024-04-09T11:27:07Z) - Graph Neural Networks for Learning Equivariant Representations of Neural Networks [55.04145324152541]
We propose to represent neural networks as computational graphs of parameters.
Our approach enables a single model to encode neural computational graphs with diverse architectures.
We showcase the effectiveness of our method on a wide range of tasks, including classification and editing of implicit neural representations.
arXiv Detail & Related papers (2024-03-18T18:01:01Z) - How neural networks learn to classify chaotic time series [77.34726150561087]
We study the inner workings of neural networks trained to classify regular-versus-chaotic time series.
We find that the relation between input periodicity and activation periodicity is key for the performance of LKCNN models.
arXiv Detail & Related papers (2023-06-04T08:53:27Z) - Spiking Generative Adversarial Network with Attention Scoring Decoding [4.5727987473456055]
Spiking neural networks offer a closer approximation to brain-like processing.
We build a spiking generative adversarial network capable of handling complex images.
arXiv Detail & Related papers (2023-05-17T14:35:45Z) - Contrastive-Signal-Dependent Plasticity: Self-Supervised Learning in Spiking Neural Circuits [61.94533459151743]
This work addresses the challenge of designing neurobiologically-motivated schemes for adjusting the synapses of spiking networks.
Our experimental simulations demonstrate a consistent advantage over other biologically-plausible approaches when training recurrent spiking networks.
arXiv Detail & Related papers (2023-03-30T02:40:28Z) - Spiking neural network for nonlinear regression [68.8204255655161]
Spiking neural networks carry the potential for a massive reduction in memory and energy consumption.
They introduce temporal and neuronal sparsity, which can be exploited by next-generation neuromorphic hardware.
A framework for regression using spiking neural networks is proposed.
arXiv Detail & Related papers (2022-10-06T13:04:45Z) - Gaussian Process Surrogate Models for Neural Networks [6.8304779077042515]
In science and engineering, modeling is a methodology used to understand complex systems whose internal processes are opaque.
We construct a class of surrogate models for neural networks using Gaussian processes.
We demonstrate our approach captures existing phenomena related to the spectral bias of neural networks, and then show that our surrogate models can be used to solve practical problems.
arXiv Detail & Related papers (2022-08-11T20:17:02Z) - Data-driven emergence of convolutional structure in neural networks [83.4920717252233]
We show how fully-connected neural networks solving a discrimination task can learn a convolutional structure directly from their inputs.
By carefully designing data models, we show that the emergence of this pattern is triggered by the non-Gaussian, higher-order local structure of the inputs.
arXiv Detail & Related papers (2022-02-01T17:11:13Z) - A multi-agent model for growing spiking neural networks [0.0]
This project has explored rules for growing the connections between the neurons in Spiking Neural Networks as a learning mechanism.
Results in a simulation environment showed that for a given set of parameters it is possible to reach topologies that reproduce the tested functions.
This project also opens the door to the usage of techniques like genetic algorithms for obtaining the best suited values for the model parameters.
arXiv Detail & Related papers (2020-09-21T15:11:29Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.