A Hardware-Aware Framework for Accelerating Neural Architecture Search
Across Modalities
- URL: http://arxiv.org/abs/2205.10358v1
- Date: Thu, 19 May 2022 20:41:01 GMT
- Title: A Hardware-Aware Framework for Accelerating Neural Architecture Search
Across Modalities
- Authors: Daniel Cummings, Anthony Sarah, Sharath Nittur Sridhar, Maciej
Szankin, Juan Pablo Munoz, Sairam Sundaresan
- Abstract summary: We show how evolutionary algorithms can be paired with lightly trained objective predictors in an iterative cycle to accelerate architecture search.
Specifically, we show how evolutionary algorithms can be paired with lightly trained objective predictors in an iterative cycle to accelerate architecture search.
- Score: 7.542742087154667
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Recent advances in Neural Architecture Search (NAS) such as one-shot NAS
offer the ability to extract specialized hardware-aware sub-network
configurations from a task-specific super-network. While considerable effort
has been employed towards improving the first stage, namely, the training of
the super-network, the search for derivative high-performing sub-networks is
still under-explored. Popular methods decouple the super-network training from
the sub-network search and use performance predictors to reduce the
computational burden of searching on different hardware platforms. We propose a
flexible search framework that automatically and efficiently finds optimal
sub-networks that are optimized for different performance metrics and hardware
configurations. Specifically, we show how evolutionary algorithms can be paired
with lightly trained objective predictors in an iterative cycle to accelerate
architecture search in a multi-objective setting for various modalities
including machine translation and image classification.
Related papers
- Combining Neural Architecture Search and Automatic Code Optimization: A Survey [0.8796261172196743]
Two notable techniques are Hardware-aware Neural Architecture Search (HW-NAS) and Automatic Code Optimization (ACO)
HW-NAS automatically designs accurate yet hardware-friendly neural networks, while ACO involves searching for the best compiler optimizations to apply on neural networks.
This survey explores recent works that combine these two techniques within a single framework.
arXiv Detail & Related papers (2024-08-07T22:40:05Z) - Multi-objective Differentiable Neural Architecture Search [58.67218773054753]
We propose a novel NAS algorithm that encodes user preferences for the trade-off between performance and hardware metrics.
Our method outperforms existing MOO NAS methods across a broad range of qualitatively different search spaces and datasets.
arXiv Detail & Related papers (2024-02-28T10:09:04Z) - SimQ-NAS: Simultaneous Quantization Policy and Neural Architecture
Search [6.121126813817338]
Recent one-shot Neural Architecture Search algorithms rely on training a hardware-agnostic super-network tailored to a specific task and then extracting efficient sub-networks for different hardware platforms.
We show that by using multi-objective search algorithms paired with lightly trained predictors, we can efficiently search for both the sub-network architecture and the corresponding quantization policy.
arXiv Detail & Related papers (2023-12-19T22:08:49Z) - OFA$^2$: A Multi-Objective Perspective for the Once-for-All Neural
Architecture Search [79.36688444492405]
Once-for-All (OFA) is a Neural Architecture Search (NAS) framework designed to address the problem of searching efficient architectures for devices with different resources constraints.
We aim to give one step further in the search for efficiency by explicitly conceiving the search stage as a multi-objective optimization problem.
arXiv Detail & Related papers (2023-03-23T21:30:29Z) - Pruning-as-Search: Efficient Neural Architecture Search via Channel
Pruning and Structural Reparameterization [50.50023451369742]
Pruning-as-Search (PaS) is an end-to-end channel pruning method to search out desired sub-network automatically and efficiently.
Our proposed architecture outperforms prior arts by around $1.0%$ top-1 accuracy on ImageNet-1000 classification task.
arXiv Detail & Related papers (2022-06-02T17:58:54Z) - Searching for Efficient Neural Architectures for On-Device ML on Edge
TPUs [10.680700357879601]
Neural architecture search (NAS) comes to the rescue for efficiently utilizing the high compute throughput offered by on-device ML accelerators.
Existing NAS frameworks have several practical limitations in scaling to multiple tasks and different target platforms.
We provide a two-pronged approach to this challenge: (i) a neural architecture that decouples model cost evaluation, search space design, and the algorithm to rapidly target various on-device ML tasks, and (ii) search spaces crafted from group convolution based inverted bottleneck (IBN) variants.
arXiv Detail & Related papers (2022-04-09T00:35:19Z) - A Hardware-Aware System for Accelerating Deep Neural Network
Optimization [7.189421078452572]
We propose a comprehensive system that automatically and efficiently finds sub-networks from a pre-trained super-network.
By combining novel search tactics and algorithms with intelligent use of predictors, we significantly decrease the time needed to find optimal sub-networks.
arXiv Detail & Related papers (2022-02-25T20:07:29Z) - Enhanced Gradient for Differentiable Architecture Search [17.431144144044968]
We propose a neural network architecture search algorithm aiming to simultaneously improve network performance and reduce network complexity.
The proposed framework automatically builds the network architecture at two stages: block-level search and network-level search.
Experiment results demonstrate that our method outperforms all evaluated hand-crafted networks in image classification.
arXiv Detail & Related papers (2021-03-23T13:27:24Z) - Auto-Panoptic: Cooperative Multi-Component Architecture Search for
Panoptic Segmentation [144.50154657257605]
We propose an efficient framework to simultaneously search for all main components including backbone, segmentation branches, and feature fusion module.
Our searched architecture, namely Auto-Panoptic, achieves the new state-of-the-art on the challenging COCO and ADE20K benchmarks.
arXiv Detail & Related papers (2020-10-30T08:34:35Z) - NAS-Navigator: Visual Steering for Explainable One-Shot Deep Neural
Network Synthesis [53.106414896248246]
We present a framework that allows analysts to effectively build the solution sub-graph space and guide the network search by injecting their domain knowledge.
Applying this technique in an iterative manner allows analysts to converge to the best performing neural network architecture for a given application.
arXiv Detail & Related papers (2020-09-28T01:48:45Z) - CATCH: Context-based Meta Reinforcement Learning for Transferrable
Architecture Search [102.67142711824748]
CATCH is a novel Context-bAsed meTa reinforcement learning algorithm for transferrable arChitecture searcH.
The combination of meta-learning and RL allows CATCH to efficiently adapt to new tasks while being agnostic to search spaces.
It is also capable of handling cross-domain architecture search as competitive networks on ImageNet, COCO, and Cityscapes are identified.
arXiv Detail & Related papers (2020-07-18T09:35:53Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.