Robust Task-Oriented Dialogue Generation with Contrastive Pre-training
and Adversarial Filtering
- URL: http://arxiv.org/abs/2205.10363v1
- Date: Fri, 20 May 2022 03:13:02 GMT
- Title: Robust Task-Oriented Dialogue Generation with Contrastive Pre-training
and Adversarial Filtering
- Authors: Shiquan Yang, Xinting Huang, Jey Han Lau, Sarah Erfani
- Abstract summary: Data artifacts incentivize machine learning models to learn non-transferable generalizations.
We investigate whether popular datasets such as MultiWOZ contain such data artifacts.
We propose a contrastive learning based framework to encourage the model to ignore these cues and focus on learning generalisable patterns.
- Score: 17.7709632238066
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Data artifacts incentivize machine learning models to learn non-transferable
generalizations by taking advantage of shortcuts in the data, and there is
growing evidence that data artifacts play a role for the strong results that
deep learning models achieve in recent natural language processing benchmarks.
In this paper, we focus on task-oriented dialogue and investigate whether
popular datasets such as MultiWOZ contain such data artifacts. We found that by
only keeping frequent phrases in the training examples, state-of-the-art models
perform similarly compared to the variant trained with full data, suggesting
they exploit these spurious correlations to solve the task. Motivated by this,
we propose a contrastive learning based framework to encourage the model to
ignore these cues and focus on learning generalisable patterns. We also
experiment with adversarial filtering to remove "easy" training instances so
that the model would focus on learning from the "harder" instances. We conduct
a number of generalization experiments -- e.g., cross-domain/dataset and
adversarial tests -- to assess the robustness of our approach and found that it
works exceptionally well.
Related papers
- Improving General Text Embedding Model: Tackling Task Conflict and Data Imbalance through Model Merging [33.23758947497205]
Advanced embedding models are typically developed using large-scale multi-task data and joint training across multiple tasks.
To overcome these challenges, we explore model merging-a technique that combines independently trained models to mitigate gradient conflicts and balance data distribution.
We introduce a novel method, Self Positioning, which efficiently searches for optimal model combinations within the space of task vectors using gradient descent.
arXiv Detail & Related papers (2024-10-19T08:39:21Z) - Reinforcing Pre-trained Models Using Counterfactual Images [54.26310919385808]
This paper proposes a novel framework to reinforce classification models using language-guided generated counterfactual images.
We identify model weaknesses by testing the model using the counterfactual image dataset.
We employ the counterfactual images as an augmented dataset to fine-tune and reinforce the classification model.
arXiv Detail & Related papers (2024-06-19T08:07:14Z) - Generalization Properties of Retrieval-based Models [50.35325326050263]
Retrieval-based machine learning methods have enjoyed success on a wide range of problems.
Despite growing literature showcasing the promise of these models, the theoretical underpinning for such models remains underexplored.
We present a formal treatment of retrieval-based models to characterize their generalization ability.
arXiv Detail & Related papers (2022-10-06T00:33:01Z) - On Modality Bias Recognition and Reduction [70.69194431713825]
We study the modality bias problem in the context of multi-modal classification.
We propose a plug-and-play loss function method, whereby the feature space for each label is adaptively learned.
Our method yields remarkable performance improvements compared with the baselines.
arXiv Detail & Related papers (2022-02-25T13:47:09Z) - Exploring Task Difficulty for Few-Shot Relation Extraction [22.585574542329677]
Few-shot relation extraction (FSRE) focuses on recognizing novel relations by learning with merely a handful of annotated instances.
We introduce a novel approach based on contrastive learning that learns better representations by exploiting relation label information.
arXiv Detail & Related papers (2021-09-12T09:40:33Z) - Combining Feature and Instance Attribution to Detect Artifacts [62.63504976810927]
We propose methods to facilitate identification of training data artifacts.
We show that this proposed training-feature attribution approach can be used to uncover artifacts in training data.
We execute a small user study to evaluate whether these methods are useful to NLP researchers in practice.
arXiv Detail & Related papers (2021-07-01T09:26:13Z) - Few-Cost Salient Object Detection with Adversarial-Paced Learning [95.0220555274653]
This paper proposes to learn the effective salient object detection model based on the manual annotation on a few training images only.
We name this task as the few-cost salient object detection and propose an adversarial-paced learning (APL)-based framework to facilitate the few-cost learning scenario.
arXiv Detail & Related papers (2021-04-05T14:15:49Z) - Manifold attack [0.22419496088582863]
In this paper, we enforce the manifold preservation (manifold learning) from the original data into latent presentation.
We show that our approach of regularization provides improvements for the accuracy rate and for the robustness to adversarial examples.
arXiv Detail & Related papers (2020-09-13T09:39:32Z) - Relation-Guided Representation Learning [53.60351496449232]
We propose a new representation learning method that explicitly models and leverages sample relations.
Our framework well preserves the relations between samples.
By seeking to embed samples into subspace, we show that our method can address the large-scale and out-of-sample problem.
arXiv Detail & Related papers (2020-07-11T10:57:45Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.