eBIM-GNN : Fast and Scalable energy analysis through BIMs and Graph
Neural Networks
- URL: http://arxiv.org/abs/2205.10497v1
- Date: Sat, 21 May 2022 03:24:03 GMT
- Title: eBIM-GNN : Fast and Scalable energy analysis through BIMs and Graph
Neural Networks
- Authors: Rucha Bhalchandra Joshi and Annada Prasad Behera and Subhankar Mishra
- Abstract summary: Building Information Modeling has been used to analyze as well as increase the energy efficiency of the buildings.
Current cities which were built without the knowledge of energy savings are now demanding better ways to become smart in energy utilization.
We propose a method to creation of prototype buildings that enable us to match and generate statistics very efficiently.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Building Information Modeling has been used to analyze as well as increase
the energy efficiency of the buildings. It has shown significant promise in
existing buildings by deconstruction and retrofitting. Current cities which
were built without the knowledge of energy savings are now demanding better
ways to become smart in energy utilization. However, the existing methods of
generating BIMs work on building basis. Hence they are slow and expensive when
we scale to a larger community or even entire towns or cities. In this paper,
we propose a method to creation of prototype buildings that enable us to match
and generate statistics very efficiently. Our method suggests better energy
efficient prototypes for the existing buildings. The existing buildings are
identified and located in the 3D point cloud. We perform experiments on
synthetic dataset to demonstrate the working of our approach.
Related papers
- Digital Twin for Grey Box modeling of Multistory residential building
thermal dynamics [1.0987093127987972]
In Northern Europe heating energy alone accounts for up to 70 percent of the total building energy consumption.
In this study we propose an architecture to facilitate grey box modelling of building thermal dynamics.
The architecture is validated in a case study creating a digital twin platform.
arXiv Detail & Related papers (2024-02-05T11:25:42Z) - Semi-supervised Learning from Street-View Images and OpenStreetMap for
Automatic Building Height Estimation [59.6553058160943]
We propose a semi-supervised learning (SSL) method of automatically estimating building height from Mapillary SVI and OpenStreetMap data.
The proposed method leads to a clear performance boosting in estimating building heights with a Mean Absolute Error (MAE) around 2.1 meters.
The preliminary result is promising and motivates our future work in scaling up the proposed method based on low-cost VGI data.
arXiv Detail & Related papers (2023-07-05T18:16:30Z) - Points for Energy Renovation (PointER): A LiDAR-Derived Point Cloud
Dataset of One Million English Buildings Linked to Energy Characteristics [0.705947228027401]
This paper presents a building point cloud dataset that promotes a data-driven, large-scale understanding of the 3D representation of buildings and their energy characteristics.
We generate building point clouds by intersecting building footprints with geo-referenced LiDAR data and link them with attributes from UK's energy performance database.
To achieve a representative sample, we select one million buildings from a range of rural and urban regions across England, of which half a million are linked to energy characteristics.
arXiv Detail & Related papers (2023-06-28T08:48:22Z) - Building Coverage Estimation with Low-resolution Remote Sensing Imagery [65.95520230761544]
We propose a method for estimating building coverage using only publicly available low-resolution satellite imagery.
Our model achieves a coefficient of determination as high as 0.968 on predicting building coverage in regions of different levels of development around the world.
arXiv Detail & Related papers (2023-01-04T05:19:33Z) - Low Emission Building Control with Zero-Shot Reinforcement Learning [70.70479436076238]
Control via Reinforcement Learning (RL) has been shown to significantly improve building energy efficiency.
We show it is possible to obtain emission-reducing policies without a priori--a paradigm we call zero-shot building control.
arXiv Detail & Related papers (2022-08-12T17:13:25Z) - Estimating Building Energy Efficiency From Street View Imagery, Aerial
Imagery, and Land Surface Temperature Data [0.0]
This work proposes a new method which can estimate a building's energy efficiency using purely remotely sensed data.
We find that in the binary setting of distinguishing efficient from inefficient buildings, our end-to-end deep learning model achieves a macro-averaged F1-score of 62.06%.
arXiv Detail & Related papers (2022-06-05T21:04:20Z) - Zero Shot Learning for Predicting Energy Usage of Buildings in
Sustainable Design [2.929237637363991]
The 2030 Challenge is aimed at making all new buildings and major renovations carbon neutral by 2030.
It is important to understand how the various building factors contribute to energy usage of a building, right at design time.
Rich training datasets are needed for AI-based solutions to achieve good prediction accuracy.
arXiv Detail & Related papers (2022-02-10T18:08:58Z) - Automatic digital twin data model generation of building energy systems
from piping and instrumentation diagrams [58.720142291102135]
We present an approach to recognize symbols and connections of P&ID from buildings in a completely automated way.
We apply algorithms for symbol recognition, line recognition and derivation of connections to the data sets.
The approach can be used in further processes like control generation, (distributed) model predictive control or fault detection.
arXiv Detail & Related papers (2021-08-31T15:09:39Z) - Adversarial Energy Disaggregation for Non-intrusive Load Monitoring [78.47901044638525]
Energy disaggregation, also known as non-intrusive load monitoring (NILM), challenges the problem of separating the whole-home electricity usage into appliance-specific individual consumptions.
Recent advances reveal that deep neural networks (DNNs) can get favorable performance for NILM.
We introduce the idea of adversarial learning into NILM, which is new for the energy disaggregation task.
arXiv Detail & Related papers (2021-08-02T03:56:35Z) - Times Series Forecasting for Urban Building Energy Consumption Based on
Graph Convolutional Network [20.358180125750046]
Building industry accounts for more than 40% of energy consumption in the United States.
UBEM is the foundation to support the design of energy-efficient communities.
Data-driven models integrated engineering or physical knowledge can significantly improve the urban building energy simulation.
arXiv Detail & Related papers (2021-05-27T19:02:04Z) - NeurOpt: Neural network based optimization for building energy
management and climate control [58.06411999767069]
We propose a data-driven control algorithm based on neural networks to reduce this cost of model identification.
We validate our learning and control algorithms on a two-story building with ten independently controlled zones, located in Italy.
arXiv Detail & Related papers (2020-01-22T00:51:03Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.