Myocardial Segmentation of Late Gadolinium Enhanced MR Images by
Propagation of Contours from Cine MR Images
- URL: http://arxiv.org/abs/2205.10595v1
- Date: Sat, 21 May 2022 13:34:59 GMT
- Title: Myocardial Segmentation of Late Gadolinium Enhanced MR Images by
Propagation of Contours from Cine MR Images
- Authors: Dong Wei, Ying Sun, Ping Chai, Adrian Low and Sim Heng Ong
- Abstract summary: We propose an automatic segmentation framework that fully utilizes shared information between corresponding cine and LGE images of a same patient.
Given myocardial contours in cine CMR images, the proposed framework achieves accurate segmentation of LGE CMR images in a coarse-to-fine manner.
- Score: 6.380798162584172
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Automatic segmentation of myocardium in Late Gadolinium Enhanced (LGE)
Cardiac MR (CMR) images is often difficult due to the intensity heterogeneity
resulting from accumulation of contrast agent in infarcted areas. In this
paper, we propose an automatic segmentation framework that fully utilizes
shared information between corresponding cine and LGE images of a same patient.
Given myocardial contours in cine CMR images, the proposed framework achieves
accurate segmentation of LGE CMR images in a coarse-to-fine manner. Affine
registration is first performed between the corresponding cine and LGE image
pair, followed by nonrigid registration, and finally local deformation of
myocardial contours driven by forces derived from local features of the LGE
image. Experimental results on real patient data with expert outlined ground
truth show that the proposed framework can generate accurate and reliable
results for myocardial segmentation of LGE CMR images.
Related papers
- Epicardium Prompt-guided Real-time Cardiac Ultrasound Frame-to-volume Registration [50.602074919305636]
This paper introduces a lightweight end-to-end Cardiac Ultrasound frame-to-volume Registration network, termed CU-Reg.
We use epicardium prompt-guided anatomical clues to reinforce the interaction of 2D sparse and 3D dense features, followed by a voxel-wise local-global aggregation of enhanced features.
arXiv Detail & Related papers (2024-06-20T17:47:30Z) - Aligning Multi-Sequence CMR Towards Fully Automated Myocardial Pathology
Segmentation [20.68539814306763]
Myocardial pathology segmentation (MyoPS) is critical for the risk stratification and treatment planning of myocardial infarction (MI)
This work presents an automatic MyoPS framework for unaligned MS-CMR images.
arXiv Detail & Related papers (2023-02-07T15:41:40Z) - Reliable Joint Segmentation of Retinal Edema Lesions in OCT Images [55.83984261827332]
In this paper, we propose a novel reliable multi-scale wavelet-enhanced transformer network.
We develop a novel segmentation backbone that integrates a wavelet-enhanced feature extractor network and a multi-scale transformer module.
Our proposed method achieves better segmentation accuracy with a high degree of reliability as compared to other state-of-the-art segmentation approaches.
arXiv Detail & Related papers (2022-12-01T07:32:56Z) - A Comprehensive 3-D Framework for Automatic Quantification of Late
Gadolinium Enhanced Cardiac Magnetic Resonance Images [5.947543669357994]
Late gadolinium enhanced (LGE) cardiac magnetic resonance (CMR) can directly visualize nonviable myocardium with hyperenhanced intensities.
For heart attack patients, it is crucial to facilitate the decision of appropriate therapy by analyzing and quantifying their LGE CMR images.
To achieve accurate quantification, LGE CMR images need to be processed in two steps: segmentation of the myocardium followed by classification of infarcts.
arXiv Detail & Related papers (2022-05-21T11:54:39Z) - Three-Dimensional Segmentation of the Left Ventricle in Late Gadolinium
Enhanced MR Images of Chronic Infarction Combining Long- and Short-Axis
Information [5.947543669357994]
We present a comprehensive framework for automatic 3D segmentation of the LV in LGE CMR images.
We propose a novel parametric model of the LV for consistent myocardial edge points detection.
We have evaluated the proposed framework with 21 sets of real patient and 4 sets of simulated phantom data.
arXiv Detail & Related papers (2022-05-21T09:47:50Z) - A Long Short-term Memory Based Recurrent Neural Network for
Interventional MRI Reconstruction [50.1787181309337]
We propose a convolutional long short-term memory (Conv-LSTM) based recurrent neural network (RNN), or ConvLR, to reconstruct interventional images with golden-angle radial sampling.
The proposed algorithm has the potential to achieve real-time i-MRI for DBS and can be used for general purpose MR-guided intervention.
arXiv Detail & Related papers (2022-03-28T14:03:45Z) - Cardiac Segmentation on Late Gadolinium Enhancement MRI: A Benchmark
Study from Multi-Sequence Cardiac MR Segmentation Challenge [43.01944884184009]
This paper presents the selective results from the Multi-Sequence MR (MS-CMR) challenge, in conjunction with MII 2019.
It was aimed to develop new algorithms, as well as benchmark existing ones for LGE CMR segmentation and compare them objectively.
The success of these methods was mainly attributed to the inclusion of auxiliary sequences from the MS-CMR images.
arXiv Detail & Related papers (2020-06-22T17:04:38Z) - On the effectiveness of GAN generated cardiac MRIs for segmentation [12.59275199633534]
We propose a Variational Autoencoder (VAE) trained to learn the latent representations of cardiac shapes.
On the other side is a GAN that uses "SPatially-Adaptive (DE)Normalization" modules to generate realistic MR images tailored to a given anatomical map.
We show that segmentation with CNNs trained with our synthetic annotated images gets competitive results compared to traditional techniques.
arXiv Detail & Related papers (2020-05-18T18:48:38Z) - A Global Benchmark of Algorithms for Segmenting Late Gadolinium-Enhanced
Cardiac Magnetic Resonance Imaging [90.29017019187282]
" 2018 Left Atrium Challenge" using 154 3D LGE-MRIs, currently the world's largest cardiac LGE-MRI dataset.
Analyse of the submitted algorithms using technical and biological metrics was performed.
Results show the top method achieved a dice score of 93.2% and a mean surface to a surface distance of 0.7 mm.
arXiv Detail & Related papers (2020-04-26T08:49:17Z) - Multifold Acceleration of Diffusion MRI via Slice-Interleaved Diffusion
Encoding (SIDE) [50.65891535040752]
We propose a diffusion encoding scheme, called Slice-Interleaved Diffusion.
SIDE, that interleaves each diffusion-weighted (DW) image volume with slices encoded with different diffusion gradients.
We also present a method based on deep learning for effective reconstruction of DW images from the highly slice-undersampled data.
arXiv Detail & Related papers (2020-02-25T14:48:17Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.