CNNs Avoid Curse of Dimensionality by Learning on Patches
- URL: http://arxiv.org/abs/2205.10760v4
- Date: Wed, 12 Apr 2023 17:33:41 GMT
- Title: CNNs Avoid Curse of Dimensionality by Learning on Patches
- Authors: Vamshi C. Madala and Shivkumar Chandrasekaran and Jason Bunk
- Abstract summary: We argue that convolutional neural networks (CNNs) operate on the domain of image patches.
Our work is the first to derive an a priori error bound for the generalization error of CNNs.
Our patch-based theory also offers explanation for why data augmentation techniques like Cutout, CutMix and random cropping are effective in improving the generalization error of CNNs.
- Score: 11.546219454021935
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Despite the success of convolutional neural networks (CNNs) in numerous
computer vision tasks and their extraordinary generalization performances,
several attempts to predict the generalization errors of CNNs have only been
limited to a posteriori analyses thus far. A priori theories explaining the
generalization performances of deep neural networks have mostly ignored the
convolutionality aspect and do not specify why CNNs are able to seemingly
overcome curse of dimensionality on computer vision tasks like image
classification where the image dimensions are in thousands. Our work attempts
to explain the generalization performance of CNNs on image classification under
the hypothesis that CNNs operate on the domain of image patches. Ours is the
first work we are aware of to derive an a priori error bound for the
generalization error of CNNs and we present both quantitative and qualitative
evidences in the support of our theory. Our patch-based theory also offers
explanation for why data augmentation techniques like Cutout, CutMix and random
cropping are effective in improving the generalization error of CNNs.
Related papers
- A Neurosymbolic Framework for Bias Correction in Convolutional Neural Networks [2.249916681499244]
We introduce a neurosymbolic framework called NeSyBiCor for bias correction in a trained CNN.
We show that our framework successfully corrects the biases of CNNs trained with subsets of classes from the "Places" dataset.
arXiv Detail & Related papers (2024-05-24T19:09:53Z) - Improving the Accuracy and Robustness of CNNs Using a Deep CCA Neural
Data Regularizer [2.026424957803652]
As convolutional neural networks (CNNs) become more accurate at object recognition, their representations become more similar to the primate visual system.
Previous attempts to address this question showed very modest gains in accuracy, owing in part to limitations of the regularization method.
We develop a new neural data regularizer for CNNs that uses Deep Correlation Analysis (DCCA) to optimize the resemblance of the CNN's image representations to that of the monkey visual cortex.
arXiv Detail & Related papers (2022-09-06T15:40:39Z) - What Can Be Learnt With Wide Convolutional Neural Networks? [69.55323565255631]
We study infinitely-wide deep CNNs in the kernel regime.
We prove that deep CNNs adapt to the spatial scale of the target function.
We conclude by computing the generalisation error of a deep CNN trained on the output of another deep CNN.
arXiv Detail & Related papers (2022-08-01T17:19:32Z) - Prune and distill: similar reformatting of image information along rat
visual cortex and deep neural networks [61.60177890353585]
Deep convolutional neural networks (CNNs) have been shown to provide excellent models for its functional analogue in the brain, the ventral stream in visual cortex.
Here we consider some prominent statistical patterns that are known to exist in the internal representations of either CNNs or the visual cortex.
We show that CNNs and visual cortex share a similarly tight relationship between dimensionality expansion/reduction of object representations and reformatting of image information.
arXiv Detail & Related papers (2022-05-27T08:06:40Z) - Redundant representations help generalization in wide neural networks [71.38860635025907]
We study the last hidden layer representations of various state-of-the-art convolutional neural networks.
We find that if the last hidden representation is wide enough, its neurons tend to split into groups that carry identical information, and differ from each other only by statistically independent noise.
arXiv Detail & Related papers (2021-06-07T10:18:54Z) - BreakingBED -- Breaking Binary and Efficient Deep Neural Networks by
Adversarial Attacks [65.2021953284622]
We study robustness of CNNs against white-box and black-box adversarial attacks.
Results are shown for distilled CNNs, agent-based state-of-the-art pruned models, and binarized neural networks.
arXiv Detail & Related papers (2021-03-14T20:43:19Z) - The Mind's Eye: Visualizing Class-Agnostic Features of CNNs [92.39082696657874]
We propose an approach to visually interpret CNN features given a set of images by creating corresponding images that depict the most informative features of a specific layer.
Our method uses a dual-objective activation and distance loss, without requiring a generator network nor modifications to the original model.
arXiv Detail & Related papers (2021-01-29T07:46:39Z) - Color Channel Perturbation Attacks for Fooling Convolutional Neural
Networks and A Defense Against Such Attacks [16.431689066281265]
The Conalvolutional Neural Networks (CNNs) have emerged as a powerful data dependent hierarchical feature extraction method.
It is observed that the network overfits the training samples very easily.
We propose a Color Channel Perturbation (CCP) attack to fool the CNNs.
arXiv Detail & Related papers (2020-12-20T11:35:29Z) - The shape and simplicity biases of adversarially robust ImageNet-trained
CNNs [9.707679445925516]
We study the shape bias and internal mechanisms that enable the generalizability of AlexNet, GoogLeNet, and ResNet-50 models trained via adversarial training.
Remarkably, adversarial training induces three simplicity biases into hidden neurons in the process of "robustifying" CNNs.
arXiv Detail & Related papers (2020-06-16T16:38:16Z) - Approximation and Non-parametric Estimation of ResNet-type Convolutional
Neural Networks [52.972605601174955]
We show a ResNet-type CNN can attain the minimax optimal error rates in important function classes.
We derive approximation and estimation error rates of the aformentioned type of CNNs for the Barron and H"older classes.
arXiv Detail & Related papers (2019-03-24T19:42:39Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.