Memorization Without Overfitting: Analyzing the Training Dynamics of
Large Language Models
- URL: http://arxiv.org/abs/2205.10770v1
- Date: Sun, 22 May 2022 07:43:50 GMT
- Title: Memorization Without Overfitting: Analyzing the Training Dynamics of
Large Language Models
- Authors: Kushal Tirumala, Aram H. Markosyan, Luke Zettlemoyer, Armen Aghajanyan
- Abstract summary: We study exact memorization in causal and masked language modeling, across model sizes and throughout the training process.
Surprisingly, we show that larger models can memorize a larger portion of the data before over-fitting and tend to forget less throughout the training process.
- Score: 64.22311189896888
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Despite their wide adoption, the underlying training and memorization
dynamics of very large language models is not well understood. We empirically
study exact memorization in causal and masked language modeling, across model
sizes and throughout the training process. We measure the effects of dataset
size, learning rate, and model size on memorization, finding that larger
language models memorize training data faster across all settings.
Surprisingly, we show that larger models can memorize a larger portion of the
data before over-fitting and tend to forget less throughout the training
process. We also analyze the memorization dynamics of different parts of speech
and find that models memorize nouns and numbers first; we hypothesize and
provide empirical evidence that nouns and numbers act as a unique identifier
for memorizing individual training examples. Together, these findings present
another piece of the broader puzzle of trying to understand what actually
improves as models get bigger.
Related papers
- Generalization v.s. Memorization: Tracing Language Models' Capabilities Back to Pretraining Data [76.90128359866462]
We introduce an extended concept of memorization, distributional memorization, which measures the correlation between the output probabilities and the pretraining data frequency.
This study demonstrates that memorization plays a larger role in simpler, knowledge-intensive tasks, while generalization is the key for harder, reasoning-based tasks.
arXiv Detail & Related papers (2024-07-20T21:24:40Z) - A Multi-Perspective Analysis of Memorization in Large Language Models [10.276594755936529]
Large Language Models (LLMs) show unprecedented performance in various fields.
LLMs can generate the same content used to train them.
This research comprehensively discussed memorization from various perspectives.
arXiv Detail & Related papers (2024-05-19T15:00:50Z) - SoK: Memorization in General-Purpose Large Language Models [25.448127387943053]
Large Language Models (LLMs) are advancing at a remarkable pace, with myriad applications under development.
LLMs can memorize short secrets in the training data, but can also memorize concepts like facts or writing styles that can be expressed in text in many different ways.
We propose a taxonomy for memorization in LLMs that covers verbatim text, facts, ideas and algorithms, writing styles, distributional properties, and alignment goals.
arXiv Detail & Related papers (2023-10-24T14:25:53Z) - Exploring Memorization in Fine-tuned Language Models [53.52403444655213]
We conduct the first comprehensive analysis to explore language models' memorization during fine-tuning across tasks.
Our studies with open-sourced and our own fine-tuned LMs across various tasks indicate that memorization presents a strong disparity among different fine-tuning tasks.
We provide an intuitive explanation of this task disparity via sparse coding theory and unveil a strong correlation between memorization and attention score distribution.
arXiv Detail & Related papers (2023-10-10T15:41:26Z) - Quantifying and Analyzing Entity-level Memorization in Large Language
Models [4.59914731734176]
Large language models (LLMs) have been proven capable of memorizing their training data.
Privacy risks arising from memorization have attracted increasing attention.
We propose a fine-grained, entity-level definition to quantify memorization with conditions and metrics closer to real-world scenarios.
arXiv Detail & Related papers (2023-08-30T03:06:47Z) - Retentive or Forgetful? Diving into the Knowledge Memorizing Mechanism
of Language Models [49.39276272693035]
Large-scale pre-trained language models have shown remarkable memorizing ability.
Vanilla neural networks without pre-training have been long observed suffering from the catastrophic forgetting problem.
We find that 1) Vanilla language models are forgetful; 2) Pre-training leads to retentive language models; 3) Knowledge relevance and diversification significantly influence the memory formation.
arXiv Detail & Related papers (2023-05-16T03:50:38Z) - Quantifying Memorization Across Neural Language Models [61.58529162310382]
Large language models (LMs) have been shown to memorize parts of their training data, and when prompted appropriately, they will emit the memorized data verbatim.
This is undesirable because memorization violates privacy (exposing user data), degrades utility (repeated easy-to-memorize text is often low quality), and hurts fairness (some texts are memorized over others).
We describe three log-linear relationships that quantify the degree to which LMs emit memorized training data.
arXiv Detail & Related papers (2022-02-15T18:48:31Z) - Counterfactual Memorization in Neural Language Models [91.8747020391287]
Modern neural language models that are widely used in various NLP tasks risk memorizing sensitive information from their training data.
An open question in previous studies of language model memorization is how to filter out "common" memorization.
We formulate a notion of counterfactual memorization which characterizes how a model's predictions change if a particular document is omitted during training.
arXiv Detail & Related papers (2021-12-24T04:20:57Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.