Breakdown of quantization in nonlinear Thouless pumping
- URL: http://arxiv.org/abs/2205.10978v2
- Date: Sun, 10 Sep 2023 17:17:31 GMT
- Title: Breakdown of quantization in nonlinear Thouless pumping
- Authors: Thomas Tuloup, Raditya Weda Bomantara, and Jiangbin Gong
- Abstract summary: This work uncovers the fate of nonlinear Thouless pumping in the regime of intermediate nonlinearity.
We identify the presence of critical nonlinearity strength at which quantized pumping of solitons breaks down regardless of the protocol time scale.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The dynamics of solitons driven in a nonlinear Thouless pump and its
connection with the system's topology were recently explored for both weak and
strong nonlinear strength. This work uncovers the fate of nonlinear Thouless
pumping in the regime of intermediate nonlinearity, thus establishing a
fascinating crossover from the observation of nonzero and quantized pumping at
weak nonlinearity to zero pumping at strong nonlinearity. We identify the
presence of critical nonlinearity strength at which quantized pumping of
solitons breaks down regardless of the protocol time scale. Such an obstruction
to pumping quantization is attributed to the presence of loop structures of
nonlinear topological bands. Our results not only unveil a missing piece of
physics in nonlinear Thouless pumping, but also provide a means to detect loop
structures of nonlinear systems investigated in real space.
Related papers
- Josephson bifurcation readout: beyond the monochromatic approximation [49.1574468325115]
We analyze properties of bifurcation quantum detectors based on weakly nonlinear superconducting resonance circuits.
This circuit can serve as an efficient detector of the quantum state of superconducting qubits.
arXiv Detail & Related papers (2024-05-25T22:22:37Z) - Universal control of a bosonic mode via drive-activated native cubic
interactions [0.3273124984242396]
Linear bosonic modes offer a hardware-efficient alternative for quantum information processing.
The lack of nonlinearity in photonics has led to encoded measurement-based quantum computing.
We demonstrate universal control of a bosonic mode composed of a superconducting nonlinear asymmetric inductive element.
arXiv Detail & Related papers (2023-08-29T14:13:41Z) - Dynamical chaos in nonlinear Schr\"odinger models with subquadratic
power nonlinearity [137.6408511310322]
We deal with a class of nonlinear Schr"odinger lattices with random potential and subquadratic power nonlinearity.
We show that the spreading process is subdiffusive and has complex microscopic organization.
The limit of quadratic power nonlinearity is also discussed and shown to result in a delocalization border.
arXiv Detail & Related papers (2023-01-20T16:45:36Z) - On the quantization of AB phase in nonlinear systems [3.515802569456161]
We study the Aharonov-Bohm phase associated with an adiabatic process in the momentum space.
For and only for Kerr nonlinearity, the AB phase experiences a jump of $pi$ at the critical nonlinearity.
Our results may be useful for experimental measurement of power-law nonlinearity.
arXiv Detail & Related papers (2022-12-05T08:02:17Z) - Bloch band structures and linear response theory of nonlinear systems [1.7960907015072034]
We develop a linear response theory for nonlinear systems where the interplay between topological parameters and nonlinearity leads to new band structures.
We numerically calculate the linear response of the nonlinear Chern insulator to external fields, finding that these new band structures break the condition of adiabatic evolution and make the linear response not quantized.
arXiv Detail & Related papers (2022-10-25T05:38:23Z) - Nonlinear speed-ups in ultracold quantum gases [0.0]
We analyze whether and to what extent such nonlinear effects can be exploited to enhance the rate of quantum evolution.
We find that the quantum speed limit grows with the strength of the nonlinearity, yet it does not trivially scale with the degree'' of nonlinearity.
arXiv Detail & Related papers (2022-06-27T15:14:47Z) - Nonlinear Landauer formula: Nonlinear response theory of disordered and
topological materials [5.33024001730262]
We extend the Landauer formula to the nonlinear-response regime.
We show that while the linear conductance is directly related to the transmission probability, the nonlinear conductance is given by its derivatives with respect to energy.
Our work opens a new avenue in quantum physics beyond the linear-response regime.
arXiv Detail & Related papers (2021-10-15T18:25:26Z) - Exact solutions of interacting dissipative systems via weak symmetries [77.34726150561087]
We analytically diagonalize the Liouvillian of a class Markovian dissipative systems with arbitrary strong interactions or nonlinearity.
This enables an exact description of the full dynamics and dissipative spectrum.
Our method is applicable to a variety of other systems, and could provide a powerful new tool for the study of complex driven-dissipative quantum systems.
arXiv Detail & Related papers (2021-09-27T17:45:42Z) - Designing Kerr Interactions for Quantum Information Processing via
Counterrotating Terms of Asymmetric Josephson-Junction Loops [68.8204255655161]
static cavity nonlinearities typically limit the performance of bosonic quantum error-correcting codes.
Treating the nonlinearity as a perturbation, we derive effective Hamiltonians using the Schrieffer-Wolff transformation.
Results show that a cubic interaction allows to increase the effective rates of both linear and nonlinear operations.
arXiv Detail & Related papers (2021-07-14T15:11:05Z) - Frequency-resolved photon correlations in cavity optomechanics [58.720142291102135]
We analyze the frequency-resolved correlations of the photons being emitted from an optomechanical system.
We discuss how the time-delayed correlations can reveal information about the dynamics of the system.
This enriched understanding of the system can trigger new experiments to probe nonlinear phenomena in optomechanics.
arXiv Detail & Related papers (2020-09-14T06:17:36Z) - Hot-spots and gain enhancement in a doubly pumped parametric
down-conversion process [62.997667081978825]
We experimentally investigate the parametric down-conversion process in a nonlinear bulk crystal, driven by two non-collinear pump modes.
The experiment shows the emergence of bright hot-spots in modes shared by the two pumps, in analogy with the phenomenology recently observed in 2D nonlinear photonic crystals.
arXiv Detail & Related papers (2020-07-24T09:39:03Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.