Collective Radiance of Giant Atoms in Non-Markovian Regime
- URL: http://arxiv.org/abs/2205.10982v2
- Date: Sat, 7 Jan 2023 03:14:58 GMT
- Title: Collective Radiance of Giant Atoms in Non-Markovian Regime
- Authors: Qing-Yang Qiu, Ying Wu, and Xin-You L\"u
- Abstract summary: We investigate the non-Markovian dynamics of two giant artificial atoms interacting with a continuum of bosonic modes in a 1D waveguide.
For certain collective states, the decay rates are found to be far beyond that predicted in the the Dicke model and standard Markovian framework.
The trapped photons/phonons in the BICs can also be re-released conveniently by changing the energy level splitting of giant atoms.
- Score: 11.798151369038557
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We investigate the non-Markovian dynamics of two giant artificial atoms
interacting with a continuum of bosonic modes in a one-dimensional (1D)
waveguide. Based on the diagrammatic method, we present the exact analytical
solutions, which predict the rich phenomena of collective radiance. For the
certain collective states, the decay rates are found to be far beyond that
predicted in the the Dicke model and standard Markovian framework, which
indicates the occurrence of super-superradiance. The
superadiance-to-subradiance transition could be realized by adjusting the
exchange symmetry of giant atoms. Moreover, there exists multiple bound states
in continuum (BICs), with photons/phonons bouncing back and forth in the
cavity-like geometries formed by the coupling points. The trapped
photons/phonons in the BICs can also be re-released conveniently by changing
the energy level splitting of giant atoms. The mechanism relies on the joint
effects of the coherent time-delayed feedback and the interference between the
coupling points of giant atoms. This work fundamentally broadens the fields of
giant atom collective radiance by introducing non-Markovianity. It also paves
the way for a clean analytical description of nonlinear open quantum system
with more complex retardation.
Related papers
- Correlated relaxation and emerging entanglement in arrays of $Λ$-type atoms [83.88591755871734]
We show that the atomic entanglement emerges in the course of relaxation and persists in the final steady state of the system.
Our findings open a new way to engineer dissipation-induced entanglement.
arXiv Detail & Related papers (2024-11-11T08:39:32Z) - Non-Markovian Collective Emission of Giant emitters in the Zeno Regime [0.0]
We explore the collective Zeno dynamics of giant artificial atoms that are coupled, via multiple coupling points, to a common photonic or acoustic reservoir.
We reveal that giant atoms build up their collective emission smoothly from the decay rate of zero to that predicted by Markovian approximation.
Our results might be probed in state-of-art waveguide QED experiments, and fundamentally broaden the fields of collective emission in systems with giant atoms.
arXiv Detail & Related papers (2024-06-21T01:22:40Z) - Controlling Markovianity with Chiral Giant Atoms [0.0]
A hallmark of giant-atom physics is their non-Markovian character in the form of self-coherent feedback.
We show that by adjusting the couplings' phases, a giant atom can, counterintuitively, enter an exact Markovian regime.
arXiv Detail & Related papers (2024-02-23T19:00:01Z) - Interaction between giant atoms in a one-dimensional topological
waveguide [8.661270166527038]
We consider giant atoms coupled to a one-dimensional topological waveguide reservoir.
In the bandgap regime, where the giant-atom frequency lies outside the band, we study the generation and distribution of giant atom-photon bound states.
In the band regime, the giant-atom frequency lies in the band, under the Born-Markov approximation, we obtained effective coherence and correlated dissipative interactions.
arXiv Detail & Related papers (2023-09-07T12:00:37Z) - Higher-order topological Peierls insulator in a two-dimensional
atom-cavity system [58.720142291102135]
We show how photon-mediated interactions give rise to a plaquette-ordered bond pattern in the atomic ground state.
The pattern opens a non-trivial topological gap in 2D, resulting in a higher-order topological phase hosting corner states.
Our work shows how atomic quantum simulators can be harnessed to investigate novel strongly-correlated topological phenomena.
arXiv Detail & Related papers (2023-05-05T10:25:14Z) - Dicke superradiance in ordered arrays of multilevel atoms [0.0]
In inverted atomic ensembles, photon-mediated interactions give rise to Dicke superradiance, a form of many-body decay.
Here, we investigate Dicke superradiance in a realistic experimental setting using ordered arrays of alkaline-earth(-like) atoms.
Our work represents an important step in harnessing alkaline-earth atoms as quantum optical sources.
arXiv Detail & Related papers (2023-03-31T19:33:35Z) - Formation of robust bound states of interacting microwave photons [148.37607455646454]
One of the hallmarks of interacting systems is the formation of multi-particle bound states.
We develop a high fidelity parameterizable fSim gate that implements the periodic quantum circuit of the spin-1/2 XXZ model.
By placing microwave photons in adjacent qubit sites, we study the propagation of these excitations and observe their bound nature for up to 5 photons.
arXiv Detail & Related papers (2022-06-10T17:52:29Z) - Ultrastrong waveguide QED with giant atoms [0.0]
We extend the theory of giant atoms to deal with the ultrastrong coupling regime.
We show that virtual photons dressing the ground state are non-exponentially localized around the contact points but decay as a power-law.
arXiv Detail & Related papers (2022-05-16T18:01:13Z) - Correlated steady states and Raman lasing in continuously pumped and
probed atomic ensembles [68.8204255655161]
We consider an ensemble of Alkali atoms that are continuously optically pumped and probed.
Due to the collective scattering of photons at large optical depth, the steady state of atoms does not correspond to an uncorrelated tensor-product state.
We find and characterize regimes of Raman lasing, akin to the model of a superradiant laser.
arXiv Detail & Related papers (2022-05-10T06:54:54Z) - Dimerization of many-body subradiant states in waveguide quantum
electrodynamics [137.6408511310322]
We study theoretically subradiant states in the array of atoms coupled to photons propagating in a one-dimensional waveguide.
We introduce a generalized many-body entropy of entanglement based on exact numerical diagonalization.
We reveal the breakdown of fermionized subradiant states with increase of $f$ with emergence of short-ranged dimerized antiferromagnetic correlations.
arXiv Detail & Related papers (2021-06-17T12:17:04Z) - Collective spontaneous emission of two entangled atoms near an
oscillating mirror [50.591267188664666]
We consider the cooperative spontaneous emission of a system of two identical atoms, interacting with the electromagnetic field in the vacuum state.
Using time-dependent theory, we investigate the spectrum of the radiation emitted by the two-atom system.
We show that it is modulated in time, and that the presence of the oscillating mirror can enhance or inhibit the decay rate.
arXiv Detail & Related papers (2020-10-07T06:48:20Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.