YouTube Ad View Sentiment Analysis using Deep Learning and Machine
Learning
- URL: http://arxiv.org/abs/2205.11082v1
- Date: Mon, 23 May 2022 06:55:34 GMT
- Title: YouTube Ad View Sentiment Analysis using Deep Learning and Machine
Learning
- Authors: Tanvi Mehta, Ganesh Deshmukh
- Abstract summary: This research predicts YouTube Ad view sentiments using Deep Learning and Machine Learning algorithms like Linear Regression (LR), Support Vector Machine (SVM), Decision Tree (DT), Random Forest (RF), and Artificial Neural Network (ANN)
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Sentiment Analysis is currently a vital area of research. With the
advancement in the use of the internet, the creation of social media, websites,
blogs, opinions, ratings, etc. has increased rapidly. People express their
feedback and emotions on social media posts in the form of likes, dislikes,
comments, etc. The rapid growth in the volume of viewer-generated or
user-generated data or content on YouTube has led to an increase in YouTube
sentiment analysis. Due to this, analyzing the public reactions has become an
essential need for information extraction and data visualization in the
technical domain. This research predicts YouTube Ad view sentiments using Deep
Learning and Machine Learning algorithms like Linear Regression (LR), Support
Vector Machine (SVM), Decision Tree (DT), Random Forest (RF), and Artificial
Neural Network (ANN). Finally, a comparative analysis is done based on
experimental results acquired from different models.
Related papers
- Towards Generalist Robot Learning from Internet Video: A Survey [56.621902345314645]
We present an overview of the emerging field of Learning from Videos (LfV)
LfV aims to address the robotics data bottleneck by augmenting traditional robot data with large-scale internet video data.
We provide a review of current methods for extracting knowledge from large-scale internet video, addressing key challenges in LfV, and boosting downstream robot and reinforcement learning via the use of video data.
arXiv Detail & Related papers (2024-04-30T15:57:41Z) - A Comprehensive Review on Sentiment Analysis: Tasks, Approaches and
Applications [0.2717221198324361]
Sentiment analysis (SA) is an emerging field in text mining.
It is the process of computationally identifying and categorizing opinions expressed in a piece of text over different social media platforms.
arXiv Detail & Related papers (2023-11-19T06:29:41Z) - Analyzing Political Figures in Real-Time: Leveraging YouTube Metadata
for Sentiment Analysis [0.0]
Sentiment analysis using big data from YouTube videos metadata can be conducted to analyze public opinions on various political figures.
This study aimed to build a sentiment analysis system leveraging YouTube videos metadata.
The sentiment analysis model was built using LSTM algorithm and produces two types of sentiments: positive and negative sentiments.
arXiv Detail & Related papers (2023-09-28T08:15:55Z) - BERT-Deep CNN: State-of-the-Art for Sentiment Analysis of COVID-19
Tweets [0.7850663096185592]
The COVID-19 pandemic is one of the current events being discussed on social media platforms.
In a pandemic situation, analyzing social media texts to uncover sentimental trends can be very helpful.
We intend to study society's perception of the COVID-19 pandemic through social media using state-of-the-art BERT and Deep CNN models.
arXiv Detail & Related papers (2022-11-04T14:35:56Z) - How Would The Viewer Feel? Estimating Wellbeing From Video Scenarios [73.24092762346095]
We introduce two large-scale datasets with over 60,000 videos annotated for emotional response and subjective wellbeing.
The Video Cognitive Empathy dataset contains annotations for distributions of fine-grained emotional responses, allowing models to gain a detailed understanding of affective states.
The Video to Valence dataset contains annotations of relative pleasantness between videos, which enables predicting a continuous spectrum of wellbeing.
arXiv Detail & Related papers (2022-10-18T17:58:25Z) - Learning in Audio-visual Context: A Review, Analysis, and New
Perspective [88.40519011197144]
This survey aims to systematically organize and analyze studies of the audio-visual field.
We introduce several key findings that have inspired our computational studies.
We propose a new perspective on audio-visual scene understanding, then discuss and analyze the feasible future direction of the audio-visual learning area.
arXiv Detail & Related papers (2022-08-20T02:15:44Z) - Video Manipulations Beyond Faces: A Dataset with Human-Machine Analysis [60.13902294276283]
We present VideoSham, a dataset consisting of 826 videos (413 real and 413 manipulated).
Many of the existing deepfake datasets focus exclusively on two types of facial manipulations -- swapping with a different subject's face or altering the existing face.
Our analysis shows that state-of-the-art manipulation detection algorithms only work for a few specific attacks and do not scale well on VideoSham.
arXiv Detail & Related papers (2022-07-26T17:39:04Z) - Self-Supervised Learning for Videos: A Survey [70.37277191524755]
Self-supervised learning has shown promise in both image and video domains.
In this survey, we provide a review of existing approaches on self-supervised learning focusing on the video domain.
arXiv Detail & Related papers (2022-06-18T00:26:52Z) - OSN Dashboard Tool For Sentiment Analysis [0.0]
As opinions are central to all human activities, sentiment analysis has been applied to gain insights in this type of data.
The major drawback is the lack of standardized solutions for classification and high-level visualization.
This study proposes a sentiment analyzer dashboard for online social networking analysis.
arXiv Detail & Related papers (2022-06-14T15:56:32Z) - Tweets Sentiment Analysis via Word Embeddings and Machine Learning
Techniques [1.345251051985899]
This paper aims to perform sentiment analysis of real-time 2019 election twitter data using the feature selection model word2vec and the machine learning algorithm random forest for sentiment classification.
Word2vec improves the quality of features by considering contextual semantics of words in a text hence improving the accuracy of machine learning and sentiment analysis.
arXiv Detail & Related papers (2020-07-05T08:10:30Z) - Mi YouTube es Su YouTube? Analyzing the Cultures using YouTube
Thumbnails of Popular Videos [98.87558262467257]
This study explores culture preferences among countries using the thumbnails of YouTube trending videos.
Experimental results indicate that the users from similar cultures shares interests in watching similar videos on YouTube.
arXiv Detail & Related papers (2020-01-27T20:15:57Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.