Federated Distillation based Indoor Localization for IoT Networks
- URL: http://arxiv.org/abs/2205.11440v1
- Date: Mon, 23 May 2022 16:32:52 GMT
- Title: Federated Distillation based Indoor Localization for IoT Networks
- Authors: Yaya Etiabi, Marwa Chafii, El Mehdi Amhoud
- Abstract summary: Federated distillation (FD) paradigm has been recently proposed as a promising alternative to federated learning (FL)
In this work, we propose an FD framework that properly operates on regression learning problems.
We show that the proposed framework is much more scalable than FL, thus more likely to cope with the expansion of wireless networks.
- Score: 7.219077740523683
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Federated distillation (FD) paradigm has been recently proposed as a
promising alternative to federated learning (FL) especially in wireless sensor
networks with limited communication resources. However, all state-of-the art FD
algorithms are designed for only classification tasks and less attention has
been given to regression tasks. In this work, we propose an FD framework that
properly operates on regression learning problems. Afterwards, we present a
use-case implementation by proposing an indoor localization system that shows a
good trade-off communication load vs. accuracy compared to federated learning
(FL) based indoor localization. With our proposed framework, we reduce the
number of transmitted bits by up to 98%. Moreover, we show that the proposed
framework is much more scalable than FL, thus more likely to cope with the
expansion of wireless networks.
Related papers
- The Robustness of Spiking Neural Networks in Communication and its Application towards Network Efficiency in Federated Learning [6.9569682335746235]
Spiking Neural Networks (SNNs) have recently gained significant interest in on-chip learning in embedded devices.
In this paper, we explore the inherent robustness of SNNs under noisy communication in Federated Learning.
We propose a novel Federated Learning with TopK Sparsification algorithm to reduce the bandwidth usage for FL training.
arXiv Detail & Related papers (2024-09-19T13:37:18Z) - Communication Efficient ConFederated Learning: An Event-Triggered SAGA
Approach [67.27031215756121]
Federated learning (FL) is a machine learning paradigm that targets model training without gathering the local data over various data sources.
Standard FL, which employs a single server, can only support a limited number of users, leading to degraded learning capability.
In this work, we consider a multi-server FL framework, referred to as emphConfederated Learning (CFL) in order to accommodate a larger number of users.
arXiv Detail & Related papers (2024-02-28T03:27:10Z) - Vertical Federated Learning over Cloud-RAN: Convergence Analysis and
System Optimization [82.12796238714589]
We propose a novel cloud radio access network (Cloud-RAN) based vertical FL system to enable fast and accurate model aggregation.
We characterize the convergence behavior of the vertical FL algorithm considering both uplink and downlink transmissions.
We establish a system optimization framework by joint transceiver and fronthaul quantization design, for which successive convex approximation and alternate convex search based system optimization algorithms are developed.
arXiv Detail & Related papers (2023-05-04T09:26:03Z) - Magnitude Matters: Fixing SIGNSGD Through Magnitude-Aware Sparsification
in the Presence of Data Heterogeneity [60.791736094073]
Communication overhead has become one of the major bottlenecks in the distributed training of deep neural networks.
We propose a magnitude-driven sparsification scheme, which addresses the non-convergence issue of SIGNSGD.
The proposed scheme is validated through experiments on Fashion-MNIST, CIFAR-10, and CIFAR-100 datasets.
arXiv Detail & Related papers (2023-02-19T17:42:35Z) - CFLIT: Coexisting Federated Learning and Information Transfer [18.30671838758503]
We study the coexistence of over-the-air FL and traditional information transfer (IT) in a mobile edge network.
We propose a coexisting federated learning and information transfer (CFLIT) communication framework, where the FL and IT devices share the wireless spectrum in an OFDM system.
arXiv Detail & Related papers (2022-07-26T13:17:28Z) - SlimFL: Federated Learning with Superposition Coding over Slimmable
Neural Networks [56.68149211499535]
Federated learning (FL) is a key enabler for efficient communication and computing leveraging devices' distributed computing capabilities.
This paper proposes a novel learning framework by integrating FL and width-adjustable slimmable neural networks (SNNs)
We propose a communication and energy-efficient SNN-based FL (named SlimFL) that jointly utilizes superposition coding (SC) for global model aggregation and superposition training (ST) for updating local models.
arXiv Detail & Related papers (2022-03-26T15:06:13Z) - Joint Superposition Coding and Training for Federated Learning over
Multi-Width Neural Networks [52.93232352968347]
This paper aims to integrate two synergetic technologies, federated learning (FL) and width-adjustable slimmable neural network (SNN)
FL preserves data privacy by exchanging the locally trained models of mobile devices. SNNs are however non-trivial, particularly under wireless connections with time-varying channel conditions.
We propose a communication and energy-efficient SNN-based FL (named SlimFL) that jointly utilizes superposition coding (SC) for global model aggregation and superposition training (ST) for updating local models.
arXiv Detail & Related papers (2021-12-05T11:17:17Z) - Federated Learning over Wireless IoT Networks with Optimized
Communication and Resources [98.18365881575805]
Federated learning (FL) as a paradigm of collaborative learning techniques has obtained increasing research attention.
It is of interest to investigate fast responding and accurate FL schemes over wireless systems.
We show that the proposed communication-efficient federated learning framework converges at a strong linear rate.
arXiv Detail & Related papers (2021-10-22T13:25:57Z) - Fed-LAMB: Layerwise and Dimensionwise Locally Adaptive Optimization
Algorithm [24.42828071396353]
In the emerging paradigm of federated learning (FL), large amount of clients, such as mobile devices, are used to train on their respective data.
Due to the low bandwidth, decentralized optimization methods need to shift the computation burden from those clients to those servers.
We present Fed-LAMB, a novel learning method based on a layerwise, deep neural networks.
arXiv Detail & Related papers (2021-10-01T16:54:31Z) - Communication-Efficient Hierarchical Federated Learning for IoT
Heterogeneous Systems with Imbalanced Data [42.26599494940002]
Federated learning (FL) is a distributed learning methodology that allows multiple nodes to cooperatively train a deep learning model.
This paper studies the potential of hierarchical FL in IoT heterogeneous systems.
It proposes an optimized solution for user assignment and resource allocation on multiple edge nodes.
arXiv Detail & Related papers (2021-07-14T08:32:39Z) - FedADC: Accelerated Federated Learning with Drift Control [6.746400031322727]
Federated learning (FL) has become de facto framework for collaborative learning among edge devices with privacy concern.
Large scale implementation of FL brings new challenges, such as the incorporation of acceleration techniques designed for SGD into the distributed setting, and mitigation of the drift problem due to non-homogeneous distribution of local datasets.
We show that it is possible to address both problems using a single strategy without any major alteration to the FL framework, or introducing additional computation and communication load.
We propose FedADC, which is an accelerated FL algorithm with drift control.
arXiv Detail & Related papers (2020-12-16T17:49:37Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.