Learning to Ignore Adversarial Attacks
- URL: http://arxiv.org/abs/2205.11551v1
- Date: Mon, 23 May 2022 18:01:30 GMT
- Title: Learning to Ignore Adversarial Attacks
- Authors: Yiming Zhang, Yangqiaoyu Zhou, Samuel Carton, Chenhao Tan
- Abstract summary: We introduce the use of rationale models that can explicitly learn to ignore attack tokens.
We find that the rationale models can successfully ignore over 90% of attack tokens.
- Score: 14.24585085013907
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Despite the strong performance of current NLP models, they can be brittle
against adversarial attacks. To enable effective learning against adversarial
inputs, we introduce the use of rationale models that can explicitly learn to
ignore attack tokens. We find that the rationale models can successfully ignore
over 90\% of attack tokens. This approach leads to consistent sizable
improvements ($\sim$10\%) over baseline models in robustness on three datasets
for both BERT and RoBERTa, and also reliably outperforms data augmentation with
adversarial examples alone. In many cases, we find that our method is able to
close the gap between model performance on a clean test set and an attacked
test set and hence reduce the effect of adversarial attacks.
Related papers
- MOREL: Enhancing Adversarial Robustness through Multi-Objective Representation Learning [1.534667887016089]
deep neural networks (DNNs) are vulnerable to slight adversarial perturbations.
We show that strong feature representation learning during training can significantly enhance the original model's robustness.
We propose MOREL, a multi-objective feature representation learning approach, encouraging classification models to produce similar features for inputs within the same class, despite perturbations.
arXiv Detail & Related papers (2024-10-02T16:05:03Z) - Universal Vulnerabilities in Large Language Models: Backdoor Attacks for In-context Learning [14.011140902511135]
In-context learning, a paradigm bridging the gap between pre-training and fine-tuning, has demonstrated high efficacy in several NLP tasks.
Despite being widely applied, in-context learning is vulnerable to malicious attacks.
We design a new backdoor attack method, named ICLAttack, to target large language models based on in-context learning.
arXiv Detail & Related papers (2024-01-11T14:38:19Z) - DALA: A Distribution-Aware LoRA-Based Adversarial Attack against
Language Models [64.79319733514266]
Adversarial attacks can introduce subtle perturbations to input data.
Recent attack methods can achieve a relatively high attack success rate (ASR)
We propose a Distribution-Aware LoRA-based Adversarial Attack (DALA) method.
arXiv Detail & Related papers (2023-11-14T23:43:47Z) - Are aligned neural networks adversarially aligned? [93.91072860401856]
adversarial users can construct inputs which circumvent attempts at alignment.
We show that existing NLP-based optimization attacks are insufficiently powerful to reliably attack aligned text models.
We conjecture that improved NLP attacks may demonstrate this same level of adversarial control over text-only models.
arXiv Detail & Related papers (2023-06-26T17:18:44Z) - FLIP: A Provable Defense Framework for Backdoor Mitigation in Federated
Learning [66.56240101249803]
We study how hardening benign clients can affect the global model (and the malicious clients)
We propose a trigger reverse engineering based defense and show that our method can achieve improvement with guarantee robustness.
Our results on eight competing SOTA defense methods show the empirical superiority of our method on both single-shot and continuous FL backdoor attacks.
arXiv Detail & Related papers (2022-10-23T22:24:03Z) - Multi-granularity Textual Adversarial Attack with Behavior Cloning [4.727534308759158]
We propose MAYA, a Multi-grAnularitY Attack model to generate high-quality adversarial samples with fewer queries to victim models.
We conduct comprehensive experiments to evaluate our attack models by attacking BiLSTM, BERT and RoBERTa in two different black-box attack settings and three benchmark datasets.
arXiv Detail & Related papers (2021-09-09T15:46:45Z) - Self-Supervised Contrastive Learning with Adversarial Perturbations for
Robust Pretrained Language Models [18.726529370845256]
This paper improves the robustness of the pretrained language model BERT against word substitution-based adversarial attacks.
We also create an adversarial attack for word-level adversarial training on BERT.
arXiv Detail & Related papers (2021-07-15T21:03:34Z) - Towards Variable-Length Textual Adversarial Attacks [68.27995111870712]
It is non-trivial to conduct textual adversarial attacks on natural language processing tasks due to the discreteness of data.
In this paper, we propose variable-length textual adversarial attacks(VL-Attack)
Our method can achieve $33.18$ BLEU score on IWSLT14 German-English translation, achieving an improvement of $1.47$ over the baseline model.
arXiv Detail & Related papers (2021-04-16T14:37:27Z) - Adversarial Self-Supervised Contrastive Learning [62.17538130778111]
Existing adversarial learning approaches mostly use class labels to generate adversarial samples that lead to incorrect predictions.
We propose a novel adversarial attack for unlabeled data, which makes the model confuse the instance-level identities of the perturbed data samples.
We present a self-supervised contrastive learning framework to adversarially train a robust neural network without labeled data.
arXiv Detail & Related papers (2020-06-13T08:24:33Z) - BERT-ATTACK: Adversarial Attack Against BERT Using BERT [77.82947768158132]
Adrial attacks for discrete data (such as texts) are more challenging than continuous data (such as images)
We propose textbfBERT-Attack, a high-quality and effective method to generate adversarial samples.
Our method outperforms state-of-the-art attack strategies in both success rate and perturb percentage.
arXiv Detail & Related papers (2020-04-21T13:30:02Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.