Using Natural Language and Program Abstractions to Instill Human
Inductive Biases in Machines
- URL: http://arxiv.org/abs/2205.11558v1
- Date: Mon, 23 May 2022 18:17:58 GMT
- Title: Using Natural Language and Program Abstractions to Instill Human
Inductive Biases in Machines
- Authors: Sreejan Kumar, Carlos G. Correa, Ishita Dasgupta, Raja Marjieh,
Michael Y. Hu, Robert D. Hawkins, Nathaniel D. Daw, Jonathan D. Cohen,
Karthik Narasimhan, Thomas L. Griffiths
- Abstract summary: We show that agents trained by meta-learning may acquire very different strategies from humans.
We show that co-training these agents on predicting representations from natural language task descriptions and from programs induced to generate such tasks guides them toward human-like inductive biases.
- Score: 27.79626958016208
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Strong inductive biases are a key component of human intelligence, allowing
people to quickly learn a variety of tasks. Although meta-learning has emerged
as an approach for endowing neural networks with useful inductive biases,
agents trained by meta-learning may acquire very different strategies from
humans. We show that co-training these agents on predicting representations
from natural language task descriptions and from programs induced to generate
such tasks guides them toward human-like inductive biases. Human-generated
language descriptions and program induction with library learning both result
in more human-like behavior in downstream meta-reinforcement learning agents
than less abstract controls (synthetic language descriptions, program induction
without library learning), suggesting that the abstraction supported by these
representations is key.
Related papers
- Adaptive Language-Guided Abstraction from Contrastive Explanations [53.48583372522492]
It is necessary to determine which features of the environment are relevant before determining how these features should be used to compute reward.
End-to-end methods for joint feature and reward learning often yield brittle reward functions that are sensitive to spurious state features.
This paper describes a method named ALGAE which alternates between using language models to iteratively identify human-meaningful features.
arXiv Detail & Related papers (2024-09-12T16:51:58Z) - Symbolic Learning Enables Self-Evolving Agents [55.625275970720374]
We introduce agent symbolic learning, a systematic framework that enables language agents to optimize themselves on their own.
Agent symbolic learning is designed to optimize the symbolic network within language agents by mimicking two fundamental algorithms in connectionist learning.
We conduct proof-of-concept experiments on both standard benchmarks and complex real-world tasks.
arXiv Detail & Related papers (2024-06-26T17:59:18Z) - Interpretable Robotic Manipulation from Language [11.207620790833271]
We introduce an explainable behavior cloning agent, named Ex-PERACT, specifically designed for manipulation tasks.
At the top level, the model is tasked with learning a discrete skill code, while at the bottom level, the policy network translates the problem into a voxelized grid and maps the discretized actions to voxel grids.
We evaluate our method across eight challenging manipulation tasks utilizing the RLBench benchmark, demonstrating that Ex-PERACT not only achieves competitive policy performance but also effectively bridges the gap between human instructions and machine execution in complex environments.
arXiv Detail & Related papers (2024-05-27T11:02:21Z) - Policy Learning with a Language Bottleneck [65.99843627646018]
Policy Learning with a Language Bottleneck (PLLBB) is a framework enabling AI agents to generate linguistic rules.
PLLBB alternates between a rule generation step guided by language models, and an update step where agents learn new policies guided by rules.
In a two-player communication game, a maze solving task, and two image reconstruction tasks, we show thatPLLBB agents are not only able to learn more interpretable and generalizable behaviors, but can also share the learned rules with human users.
arXiv Detail & Related papers (2024-05-07T08:40:21Z) - An Incomplete Loop: Deductive, Inductive, and Abductive Learning in Large Language Models [99.31449616860291]
Modern language models (LMs) can learn to perform new tasks in different ways.
In instruction following, the target task is described explicitly in natural language; in few-shot prompting, the task is specified implicitly.
In instruction inference, LMs are presented with in-context examples and are then prompted to generate a natural language task description.
arXiv Detail & Related papers (2024-04-03T19:31:56Z) - Unveiling the pressures underlying language learning and use in neural networks, large language models, and humans: Lessons from emergent machine-to-machine communication [5.371337604556311]
We review three cases where mismatches between the emergent linguistic behavior of neural agents and humans were resolved.
We identify key pressures at play for language learning and emergence: communicative success, production effort, learnability, and other psycho-/sociolinguistic factors.
arXiv Detail & Related papers (2024-03-21T14:33:34Z) - Language Models as Inductive Reasoners [125.99461874008703]
We propose a new paradigm (task) for inductive reasoning, which is to induce natural language rules from natural language facts.
We create a dataset termed DEER containing 1.2k rule-fact pairs for the task, where rules and facts are written in natural language.
We provide the first and comprehensive analysis of how well pretrained language models can induce natural language rules from natural language facts.
arXiv Detail & Related papers (2022-12-21T11:12:14Z) - Ask Your Humans: Using Human Instructions to Improve Generalization in
Reinforcement Learning [32.82030512053361]
We propose the use of step-by-step human demonstrations in the form of natural language instructions and action trajectories.
We find that human demonstrations help solve the most complex tasks.
We also find that incorporating natural language allows the model to generalize to unseen tasks in a zero-shot setting.
arXiv Detail & Related papers (2020-11-01T14:39:46Z) - Language-Conditioned Imitation Learning for Robot Manipulation Tasks [39.40937105264774]
We introduce a method for incorporating unstructured natural language into imitation learning.
At training time, the expert can provide demonstrations along with verbal descriptions in order to describe the underlying intent.
The training process then interrelates these two modalities to encode the correlations between language, perception, and motion.
The resulting language-conditioned visuomotor policies can be conditioned at runtime on new human commands and instructions.
arXiv Detail & Related papers (2020-10-22T21:49:08Z) - Human Instruction-Following with Deep Reinforcement Learning via
Transfer-Learning from Text [12.88819706338837]
Recent work has described neural-network-based agents that are trained with reinforcement learning to execute language-like commands in simulated worlds.
We propose a conceptually simple method for training instruction-following agents with deep RL that are robust to natural human instructions.
arXiv Detail & Related papers (2020-05-19T12:16:58Z) - On the interaction between supervision and self-play in emergent
communication [82.290338507106]
We investigate the relationship between two categories of learning signals with the ultimate goal of improving sample efficiency.
We find that first training agents via supervised learning on human data followed by self-play outperforms the converse.
arXiv Detail & Related papers (2020-02-04T02:35:19Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.