Challenges in Measuring Bias via Open-Ended Language Generation
- URL: http://arxiv.org/abs/2205.11601v1
- Date: Mon, 23 May 2022 19:57:15 GMT
- Title: Challenges in Measuring Bias via Open-Ended Language Generation
- Authors: Afra Feyza Aky\"urek, Muhammed Yusuf Kocyigit, Sejin Paik, Derry
Wijaya
- Abstract summary: We analyze how specific choices of prompt sets, metrics, automatic tools and sampling strategies affect bias results.
We provide recommendations for reporting biases in open-ended language generation.
- Score: 1.5552869983952944
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Researchers have devised numerous ways to quantify social biases vested in
pretrained language models. As some language models are capable of generating
coherent completions given a set of textual prompts, several prompting datasets
have been proposed to measure biases between social groups -- posing language
generation as a way of identifying biases. In this opinion paper, we analyze
how specific choices of prompt sets, metrics, automatic tools and sampling
strategies affect bias results. We find out that the practice of measuring
biases through text completion is prone to yielding contradicting results under
different experiment settings. We additionally provide recommendations for
reporting biases in open-ended language generation for a more complete outlook
of biases exhibited by a given language model. Code to reproduce the results is
released under https://github.com/feyzaakyurek/bias-textgen.
Related papers
- GradBias: Unveiling Word Influence on Bias in Text-to-Image Generative Models [75.04426753720553]
We propose a framework to identify, quantify, and explain biases in an open set setting.
This pipeline leverages a Large Language Model (LLM) to propose biases starting from a set of captions.
We show two variations of this framework: OpenBias and GradBias.
arXiv Detail & Related papers (2024-08-29T16:51:07Z) - CBBQ: A Chinese Bias Benchmark Dataset Curated with Human-AI
Collaboration for Large Language Models [52.25049362267279]
We present a Chinese Bias Benchmark dataset that consists of over 100K questions jointly constructed by human experts and generative language models.
The testing instances in the dataset are automatically derived from 3K+ high-quality templates manually authored with stringent quality control.
Extensive experiments demonstrate the effectiveness of the dataset in detecting model bias, with all 10 publicly available Chinese large language models exhibiting strong bias in certain categories.
arXiv Detail & Related papers (2023-06-28T14:14:44Z) - Exposing Bias in Online Communities through Large-Scale Language Models [3.04585143845864]
This work uses the flaw of bias in language models to explore the biases of six different online communities.
The bias of the resulting models is evaluated by prompting the models with different demographics and comparing the sentiment and toxicity values of these generations.
This work not only affirms how easily bias is absorbed from training data but also presents a scalable method to identify and compare the bias of different datasets or communities.
arXiv Detail & Related papers (2023-06-04T08:09:26Z) - On the Blind Spots of Model-Based Evaluation Metrics for Text Generation [79.01422521024834]
We explore a useful but often neglected methodology for robustness analysis of text generation evaluation metrics.
We design and synthesize a wide range of potential errors and check whether they result in a commensurate drop in the metric scores.
Our experiments reveal interesting insensitivities, biases, or even loopholes in existing metrics.
arXiv Detail & Related papers (2022-12-20T06:24:25Z) - An Analysis of Social Biases Present in BERT Variants Across Multiple
Languages [0.0]
We investigate the bias present in monolingual BERT models across a diverse set of languages.
We propose a template-based method to measure any kind of bias, based on sentence pseudo-likelihood.
We conclude that current methods of probing for bias are highly language-dependent.
arXiv Detail & Related papers (2022-11-25T23:38:08Z) - Measuring Fairness with Biased Rulers: A Survey on Quantifying Biases in
Pretrained Language Models [2.567384209291337]
An increasing awareness of biased patterns in natural language processing resources has motivated many metrics to quantify bias' and fairness'
We survey the existing literature on fairness metrics for pretrained language models and experimentally evaluate compatibility.
We find that many metrics are not compatible and highly depend on (i) templates, (ii) attribute and target seeds and (iii) the choice of embeddings.
arXiv Detail & Related papers (2021-12-14T15:04:56Z) - Balancing out Bias: Achieving Fairness Through Training Reweighting [58.201275105195485]
Bias in natural language processing arises from models learning characteristics of the author such as gender and race.
Existing methods for mitigating and measuring bias do not directly account for correlations between author demographics and linguistic variables.
This paper introduces a very simple but highly effective method for countering bias using instance reweighting.
arXiv Detail & Related papers (2021-09-16T23:40:28Z) - The Authors Matter: Understanding and Mitigating Implicit Bias in Deep
Text Classification [36.361778457307636]
Deep text classification models can produce biased outcomes for texts written by authors of certain demographic groups.
In this paper, we first demonstrate that implicit bias exists in different text classification tasks for different demographic groups.
We then build a learning-based interpretation method to deepen our knowledge of implicit bias.
arXiv Detail & Related papers (2021-05-06T16:17:38Z) - BOLD: Dataset and Metrics for Measuring Biases in Open-Ended Language
Generation [42.34923623457615]
Bias in Open-Ended Language Generation dataset consists of 23,679 English text generation prompts.
An examination of text generated from three popular language models reveals that the majority of these models exhibit a larger social bias than human-written Wikipedia text.
arXiv Detail & Related papers (2021-01-27T22:07:03Z) - Curious Case of Language Generation Evaluation Metrics: A Cautionary
Tale [52.663117551150954]
A few popular metrics remain as the de facto metrics to evaluate tasks such as image captioning and machine translation.
This is partly due to ease of use, and partly because researchers expect to see them and know how to interpret them.
In this paper, we urge the community for more careful consideration of how they automatically evaluate their models.
arXiv Detail & Related papers (2020-10-26T13:57:20Z) - Towards Controllable Biases in Language Generation [87.89632038677912]
We develop a method to induce societal biases in generated text when input prompts contain mentions of specific demographic groups.
We analyze two scenarios: 1) inducing negative biases for one demographic and positive biases for another demographic, and 2) equalizing biases between demographics.
arXiv Detail & Related papers (2020-05-01T08:25:11Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.