From Easy to Hard: Two-stage Selector and Reader for Multi-hop Question
Answering
- URL: http://arxiv.org/abs/2205.11729v1
- Date: Tue, 24 May 2022 02:33:58 GMT
- Title: From Easy to Hard: Two-stage Selector and Reader for Multi-hop Question
Answering
- Authors: Xin-Yi Li, Wei-Jun Lei, Yu-Bin Yang
- Abstract summary: Multi-hop question answering (QA) is a challenging task requiring QA systems to perform complex reasoning over multiple documents.
We propose a novel framework, From Easy to Hard (FE2H), to remove distracting information and obtain better contextual representations.
FE2H divides both the document selector and reader into two stages following an easy-to-hard manner.
- Score: 12.072618400000763
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Multi-hop question answering (QA) is a challenging task requiring QA systems
to perform complex reasoning over multiple documents and provide supporting
facts together with the exact answer. Existing works tend to utilize
graph-based reasoning and question decomposition to obtain the reasoning chain,
which inevitably introduces additional complexity and cumulative error to the
system. To address the above issue, we propose a simple yet effective novel
framework, From Easy to Hard (FE2H), to remove distracting information and
obtain better contextual representations for the multi-hop QA task. Inspired by
the iterative document selection process and the progressive learning custom of
humans, FE2H divides both the document selector and reader into two stages
following an easy-to-hard manner. Specifically, we first select the document
most relevant to the question and then utilize the question together with this
document to select other pertinent documents. As for the QA phase, our reader
is first trained on a single-hop QA dataset and then transferred into the
multi-hop QA task. We comprehensively evaluate our model on the popular
multi-hop QA benchmark HotpotQA. Experimental results demonstrate that our
method ourperforms all other methods in the leaderboard of HotpotQA (distractor
setting).
Related papers
- MFORT-QA: Multi-hop Few-shot Open Rich Table Question Answering [3.1651118728570635]
In today's fast-paced industry, professionals face the challenge of summarizing a large number of documents and extracting vital information from them on a daily basis.
To address this challenge, the approach of Table Question Answering (QA) has been developed to extract the relevant information.
Recent advancements in Large Language Models (LLMs) have opened up new possibilities for extracting information from tabular data using prompts.
arXiv Detail & Related papers (2024-03-28T03:14:18Z) - Rethinking Label Smoothing on Multi-hop Question Answering [87.68071401870283]
Multi-Hop Question Answering (MHQA) is a significant area in question answering.
In this work, we analyze the primary factors limiting the performance of multi-hop reasoning.
We propose a novel label smoothing technique, F1 Smoothing, which incorporates uncertainty into the learning process.
arXiv Detail & Related papers (2022-12-19T14:48:08Z) - Prompt-based Conservation Learning for Multi-hop Question Answering [11.516763652013005]
Multi-hop question answering requires reasoning over multiple documents to answer a complex question.
Most existing multi-hop QA methods fail to answer a large fraction of sub-questions.
We propose the Prompt-based Conservation Learning framework for multi-hop QA.
arXiv Detail & Related papers (2022-09-14T20:50:46Z) - Modeling Multi-hop Question Answering as Single Sequence Prediction [88.72621430714985]
We propose a simple generative approach (PathFid) that extends the task beyond just answer generation.
PathFid explicitly models the reasoning process to resolve the answer for multi-hop questions.
Our experiments demonstrate that PathFid leads to strong performance gains on two multi-hop QA datasets.
arXiv Detail & Related papers (2022-05-18T21:57:59Z) - Memory Augmented Sequential Paragraph Retrieval for Multi-hop Question
Answering [32.69969157825044]
We propose a new architecture that models paragraphs as sequential data and considers multi-hop information retrieval as a kind of sequence labeling task.
We evaluate our method on both full wiki and distractor subtask of HotpotQA, a public textual multi-hop QA dataset.
arXiv Detail & Related papers (2021-02-07T08:15:51Z) - Open Question Answering over Tables and Text [55.8412170633547]
In open question answering (QA), the answer to a question is produced by retrieving and then analyzing documents that might contain answers to the question.
Most open QA systems have considered only retrieving information from unstructured text.
We present a new large-scale dataset Open Table-and-Text Question Answering (OTT-QA) to evaluate performance on this task.
arXiv Detail & Related papers (2020-10-20T16:48:14Z) - Answering Complex Open-Domain Questions with Multi-Hop Dense Retrieval [117.07047313964773]
We propose a simple and efficient multi-hop dense retrieval approach for answering complex open-domain questions.
Our method does not require access to any corpus-specific information, such as inter-document hyperlinks or human-annotated entity markers.
Our system also yields a much better efficiency-accuracy trade-off, matching the best published accuracy on HotpotQA while being 10 times faster at inference time.
arXiv Detail & Related papers (2020-09-27T06:12:29Z) - Answering Any-hop Open-domain Questions with Iterative Document
Reranking [62.76025579681472]
We propose a unified QA framework to answer any-hop open-domain questions.
Our method consistently achieves performance comparable to or better than the state-of-the-art on both single-hop and multi-hop open-domain QA datasets.
arXiv Detail & Related papers (2020-09-16T04:31:38Z) - Interpretable Multi-Step Reasoning with Knowledge Extraction on Complex
Healthcare Question Answering [89.76059961309453]
HeadQA dataset contains multiple-choice questions authorized for the public healthcare specialization exam.
These questions are the most challenging for current QA systems.
We present a Multi-step reasoning with Knowledge extraction framework (MurKe)
We are striving to make full use of off-the-shelf pre-trained models.
arXiv Detail & Related papers (2020-08-06T02:47:46Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.