EBM Life Cycle: MCMC Strategies for Synthesis, Defense, and Density
Modeling
- URL: http://arxiv.org/abs/2205.12243v1
- Date: Tue, 24 May 2022 17:52:29 GMT
- Title: EBM Life Cycle: MCMC Strategies for Synthesis, Defense, and Density
Modeling
- Authors: Mitch Hill, Jonathan Mitchell, Chu Chen, Yuan Du, Mubarak Shah,
Song-Chun Zhu
- Abstract summary: This work presents strategies to learn an Energy-Based Model (EBM) according to the desired length of its MCMC sampling trajectories.
Our experiments cover three different magnitudes and learning outcomes: 1) shortrun sampling for image generation; 2) midrun sampling for principled-agnostic adversarial defense; and 3) longrun sampling for unaltered modeling of image probability densities.
- Score: 116.10821733517976
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: This work presents strategies to learn an Energy-Based Model (EBM) according
to the desired length of its MCMC sampling trajectories. MCMC trajectories of
different lengths correspond to models with different purposes. Our experiments
cover three different trajectory magnitudes and learning outcomes: 1) shortrun
sampling for image generation; 2) midrun sampling for classifier-agnostic
adversarial defense; and 3) longrun sampling for principled modeling of image
probability densities. To achieve these outcomes, we introduce three novel
methods of MCMC initialization for negative samples used in Maximum Likelihood
(ML) learning. With standard network architectures and an unaltered ML
objective, our MCMC initialization methods alone enable significant performance
gains across the three applications that we investigate. Our results include
state-of-the-art FID scores for unnormalized image densities on the CIFAR-10
and ImageNet datasets; state-of-the-art adversarial defense on CIFAR-10 among
purification methods and the first EBM defense on ImageNet; and scalable
techniques for learning valid probability densities. Code for this project can
be found at https://github.com/point0bar1/ebm-life-cycle.
Related papers
- Pseudo-triplet Guided Few-shot Composed Image Retrieval [20.040511832864503]
Composed Image Retrieval (CIR) is a challenging task that aims to retrieve the target image with a multimodal query.
We propose a novel two-stage pseudo triplet guided few-shot CIR scheme, dubbed PTG-FSCIR.
In the first stage, we propose an attentive masking and captioning-based pseudo triplet generation method, to construct pseudo triplets from pure image data.
In the second stage, we propose a challenging triplet-based CIR fine-tuning method, where we design a pseudo modification text-based sample challenging score estimation strategy.
arXiv Detail & Related papers (2024-07-08T14:53:07Z) - Learning Energy-based Model via Dual-MCMC Teaching [5.31573596283377]
Learning the energy-based model (EBM) can be achieved using the maximum likelihood estimation (MLE)
This paper studies the fundamental learning problem of the energy-based model (EBM)
arXiv Detail & Related papers (2023-12-05T03:39:54Z) - Learning Energy-Based Prior Model with Diffusion-Amortized MCMC [89.95629196907082]
Common practice of learning latent space EBMs with non-convergent short-run MCMC for prior and posterior sampling is hindering the model from further progress.
We introduce a simple but effective diffusion-based amortization method for long-run MCMC sampling and develop a novel learning algorithm for the latent space EBM based on it.
arXiv Detail & Related papers (2023-10-05T00:23:34Z) - Learning Energy-Based Models by Cooperative Diffusion Recovery Likelihood [64.95663299945171]
Training energy-based models (EBMs) on high-dimensional data can be both challenging and time-consuming.
There exists a noticeable gap in sample quality between EBMs and other generative frameworks like GANs and diffusion models.
We propose cooperative diffusion recovery likelihood (CDRL), an effective approach to tractably learn and sample from a series of EBMs.
arXiv Detail & Related papers (2023-09-10T22:05:24Z) - MV-JAR: Masked Voxel Jigsaw and Reconstruction for LiDAR-Based
Self-Supervised Pre-Training [58.07391711548269]
Masked Voxel Jigsaw and Reconstruction (MV-JAR) method for LiDAR-based self-supervised pre-training.
Masked Voxel Jigsaw and Reconstruction (MV-JAR) method for LiDAR-based self-supervised pre-training.
arXiv Detail & Related papers (2023-03-23T17:59:02Z) - Intermediate Layers Matter in Momentum Contrastive Self Supervised
Learning [1.933681537640272]
We show that bringing intermediate layers' representations of two augmented versions of an image closer together in self-supervised learning helps to improve the momentum contrastive (MoCo) method.
We analyze the models trained using our novel approach via feature similarity analysis and layer-wise probing.
arXiv Detail & Related papers (2021-10-27T22:40:41Z) - Learning Energy-Based Model with Variational Auto-Encoder as Amortized
Sampler [35.80109055748496]
Training energy-based models (EBMs) by maximum likelihood requires Markov chain Monte Carlo sampling.
We learn a variational auto-encoder (VAE) to initialize the finite-step MCMC, such as Langevin dynamics that is derived from the energy function.
With these amortized MCMC samples, the EBM can be trained by maximum likelihood, which follows an "analysis by synthesis" scheme.
We call this joint training algorithm the variational MCMC teaching, in which the VAE chases the EBM toward data distribution.
arXiv Detail & Related papers (2020-12-29T20:46:40Z) - A New Mask R-CNN Based Method for Improved Landslide Detection [54.7905160534631]
This paper presents a novel method of landslide detection by exploiting the Mask R-CNN capability of identifying an object layout.
A data set of 160 elements is created containing landslide and non-landslide images.
The proposed algorithm can be potentially useful for land use planners and policy makers of hilly areas.
arXiv Detail & Related papers (2020-10-04T07:46:37Z) - Stochastic Security: Adversarial Defense Using Long-Run Dynamics of
Energy-Based Models [82.03536496686763]
The vulnerability of deep networks to adversarial attacks is a central problem for deep learning from the perspective of both cognition and security.
We focus on defending naturally-trained classifiers using Markov Chain Monte Carlo (MCMC) sampling with an Energy-Based Model (EBM) for adversarial purification.
Our contributions are 1) an improved method for training EBM's with realistic long-run MCMC samples, 2) Expectation-Over-Transformation (EOT) defense that resolves theoretical ambiguities for defenses, and 3) state-of-the-art adversarial defense for naturally-trained classifiers and competitive defense.
arXiv Detail & Related papers (2020-05-27T17:53:36Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.