Combating Client Dropout in Federated Learning via Friend Model
Substitution
- URL: http://arxiv.org/abs/2205.13222v3
- Date: Mon, 8 May 2023 22:29:12 GMT
- Title: Combating Client Dropout in Federated Learning via Friend Model
Substitution
- Authors: Heqiang Wang, Jie Xu
- Abstract summary: Federated learning (FL) is a new distributed machine learning framework known for its benefits on data privacy and communication efficiency.
This paper studies a passive partial client participation scenario that is much less well understood.
We develop a new algorithm FL-FDMS that discovers friends of clients whose data distributions are similar.
Experiments on MNIST and CIFAR-10 confirmed the superior performance of FL-FDMS in handling client dropout in FL.
- Score: 8.325089307976654
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Federated learning (FL) is a new distributed machine learning framework known
for its benefits on data privacy and communication efficiency. Since full
client participation in many cases is infeasible due to constrained resources,
partial participation FL algorithms have been investigated that proactively
select/sample a subset of clients, aiming to achieve learning performance close
to the full participation case. This paper studies a passive partial client
participation scenario that is much less well understood, where partial
participation is a result of external events, namely client dropout, rather
than a decision of the FL algorithm. We cast FL with client dropout as a
special case of a larger class of FL problems where clients can submit
substitute (possibly inaccurate) local model updates. Based on our convergence
analysis, we develop a new algorithm FL-FDMS that discovers friends of clients
(i.e., clients whose data distributions are similar) on-the-fly and uses
friends' local updates as substitutes for the dropout clients, thereby reducing
the substitution error and improving the convergence performance. A complexity
reduction mechanism is also incorporated into FL-FDMS, making it both
theoretically sound and practically useful. Experiments on MNIST and CIFAR-10
confirmed the superior performance of FL-FDMS in handling client dropout in FL.
Related papers
- FLrce: Resource-Efficient Federated Learning with Early-Stopping Strategy [7.963276533979389]
Federated Learning (FL) achieves great popularity in the Internet of Things (IoT)
We present FLrce, an efficient FL framework with a relationship-based client selection and early-stopping strategy.
Experiment results show that, compared with existing efficient FL frameworks, FLrce improves the computation and communication efficiency by at least 30% and 43% respectively.
arXiv Detail & Related papers (2023-10-15T10:13:44Z) - Towards Instance-adaptive Inference for Federated Learning [80.38701896056828]
Federated learning (FL) is a distributed learning paradigm that enables multiple clients to learn a powerful global model by aggregating local training.
In this paper, we present a novel FL algorithm, i.e., FedIns, to handle intra-client data heterogeneity by enabling instance-adaptive inference in the FL framework.
Our experiments show that our FedIns outperforms state-of-the-art FL algorithms, e.g., a 6.64% improvement against the top-performing method with less than 15% communication cost on Tiny-ImageNet.
arXiv Detail & Related papers (2023-08-11T09:58:47Z) - Federated Learning for Semantic Parsing: Task Formulation, Evaluation
Setup, New Algorithms [29.636944156801327]
Multiple clients collaboratively train one global model without sharing their semantic parsing data.
Lorar adjusts each client's contribution to the global model update based on its training loss reduction during each round.
Clients with smaller datasets enjoy larger performance gains.
arXiv Detail & Related papers (2023-05-26T19:25:49Z) - FedCliP: Federated Learning with Client Pruning [3.796320380104124]
Federated learning (FL) is a newly emerging distributed learning paradigm.
One fundamental bottleneck in FL is the heavy communication overheads between the distributed clients and the central server.
We propose FedCliP, the first communication efficient FL training framework from a macro perspective.
arXiv Detail & Related papers (2023-01-17T09:15:37Z) - Beyond ADMM: A Unified Client-variance-reduced Adaptive Federated
Learning Framework [82.36466358313025]
We propose a primal-dual FL algorithm, termed FedVRA, that allows one to adaptively control the variance-reduction level and biasness of the global model.
Experiments based on (semi-supervised) image classification tasks demonstrate superiority of FedVRA over the existing schemes.
arXiv Detail & Related papers (2022-12-03T03:27:51Z) - FL Games: A Federated Learning Framework for Distribution Shifts [71.98708418753786]
Federated learning aims to train predictive models for data that is distributed across clients, under the orchestration of a server.
We propose FL GAMES, a game-theoretic framework for federated learning that learns causal features that are invariant across clients.
arXiv Detail & Related papers (2022-10-31T22:59:03Z) - FL Games: A federated learning framework for distribution shifts [71.98708418753786]
Federated learning aims to train predictive models for data that is distributed across clients, under the orchestration of a server.
We propose FL Games, a game-theoretic framework for federated learning for learning causal features that are invariant across clients.
arXiv Detail & Related papers (2022-05-23T07:51:45Z) - FedPrune: Towards Inclusive Federated Learning [1.308951527147782]
Federated learning (FL) is a distributed learning technique that trains a shared model over distributed data in a privacy-preserving manner.
We propose FedPrune; a system that tackles this challenge by pruning the global model for slow clients based on their device characteristics.
By using insights from Central Limit Theorem, FedPrune incorporates a new aggregation technique that achieves robust performance over non-IID data.
arXiv Detail & Related papers (2021-10-27T06:33:38Z) - Blockchain Assisted Decentralized Federated Learning (BLADE-FL):
Performance Analysis and Resource Allocation [119.19061102064497]
We propose a decentralized FL framework by integrating blockchain into FL, namely, blockchain assisted decentralized federated learning (BLADE-FL)
In a round of the proposed BLADE-FL, each client broadcasts its trained model to other clients, competes to generate a block based on the received models, and then aggregates the models from the generated block before its local training of the next round.
We explore the impact of lazy clients on the learning performance of BLADE-FL, and characterize the relationship among the optimal K, the learning parameters, and the proportion of lazy clients.
arXiv Detail & Related papers (2021-01-18T07:19:08Z) - Blockchain Assisted Decentralized Federated Learning (BLADE-FL) with
Lazy Clients [124.48732110742623]
We propose a novel framework by integrating blockchain into Federated Learning (FL)
BLADE-FL has a good performance in terms of privacy preservation, tamper resistance, and effective cooperation of learning.
It gives rise to a new problem of training deficiency, caused by lazy clients who plagiarize others' trained models and add artificial noises to conceal their cheating behaviors.
arXiv Detail & Related papers (2020-12-02T12:18:27Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.