Regularized Gradient Descent Ascent for Two-Player Zero-Sum Markov Games
- URL: http://arxiv.org/abs/2205.13746v1
- Date: Fri, 27 May 2022 03:24:12 GMT
- Title: Regularized Gradient Descent Ascent for Two-Player Zero-Sum Markov Games
- Authors: Sihan Zeng, Thinh T. Doan, Justin Romberg
- Abstract summary: We study the problem of finding Nash equilibrium in a two-player zero-sum game.
Our main contribution is to show that under proper choices of the regularization parameter, the gradient descents to the Nash equilibrium of the original unregularized problem.
- Score: 16.09467599829253
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We study the problem of finding the Nash equilibrium in a two-player zero-sum
Markov game. Due to its formulation as a minimax optimization program, a
natural approach to solve the problem is to perform gradient descent/ascent
with respect to each player in an alternating fashion. However, due to the
non-convexity/non-concavity of the underlying objective function, theoretical
understandings of this method are limited. In our paper, we consider solving an
entropy-regularized variant of the Markov game. The regularization introduces
structure into the optimization landscape that make the solutions more
identifiable and allow the problem to be solved more efficiently. Our main
contribution is to show that under proper choices of the regularization
parameter, the gradient descent ascent algorithm converges to the Nash
equilibrium of the original unregularized problem. We explicitly characterize
the finite-time performance of the last iterate of our algorithm, which vastly
improves over the existing convergence bound of the gradient descent ascent
algorithm without regularization. Finally, we complement the analysis with
numerical simulations that illustrate the accelerated convergence of the
algorithm.
Related papers
- Stochastic Zeroth-Order Optimization under Strongly Convexity and Lipschitz Hessian: Minimax Sample Complexity [59.75300530380427]
We consider the problem of optimizing second-order smooth and strongly convex functions where the algorithm is only accessible to noisy evaluations of the objective function it queries.
We provide the first tight characterization for the rate of the minimax simple regret by developing matching upper and lower bounds.
arXiv Detail & Related papers (2024-06-28T02:56:22Z) - Efficient Low-rank Identification via Accelerated Iteratively Reweighted Nuclear Norm Minimization [8.879403568685499]
We introduce an adaptive updating strategy for smoothing parameters.
This behavior transforms the algorithm into one that effectively solves problems after a few iterations.
We prove the global proposed experiment, guaranteeing that every iteration is a critical one.
arXiv Detail & Related papers (2024-06-22T02:37:13Z) - Strictly Low Rank Constraint Optimization -- An Asymptotically
$\mathcal{O}(\frac{1}{t^2})$ Method [5.770309971945476]
We propose a class of non-text and non-smooth problems with textitrank regularization to promote sparsity in optimal solution.
We show that our algorithms are able to achieve a singular convergence of $Ofrac(t2)$, which is exactly same as Nesterov's optimal convergence for first-order methods on smooth convex problems.
arXiv Detail & Related papers (2023-07-04T16:55:41Z) - PAPAL: A Provable PArticle-based Primal-Dual ALgorithm for Mixed Nash
Equilibrium [62.51015395213579]
We consider the non-AL equilibrium nonconptotic objective function in two-player zero-sum continuous games.
The proposed algorithm employs the movements of particles to represent the updates of random strategies for the $ilon$-mixed Nash equilibrium.
arXiv Detail & Related papers (2023-03-02T05:08:15Z) - First-Order Algorithms for Nonlinear Generalized Nash Equilibrium
Problems [88.58409977434269]
We consider the problem of computing an equilibrium in a class of nonlinear generalized Nash equilibrium problems (NGNEPs)
Our contribution is to provide two simple first-order algorithmic frameworks based on the quadratic penalty method and the augmented Lagrangian method.
We provide nonasymptotic theoretical guarantees for these algorithms.
arXiv Detail & Related papers (2022-04-07T00:11:05Z) - Fast Policy Extragradient Methods for Competitive Games with Entropy
Regularization [40.21627891283402]
This paper investigates the problem of computing the equilibrium of competitive games.
Motivated by the algorithmic role of entropy regularization, we develop provably efficient extragradient methods.
arXiv Detail & Related papers (2021-05-31T17:51:15Z) - Single-Timescale Stochastic Nonconvex-Concave Optimization for Smooth
Nonlinear TD Learning [145.54544979467872]
We propose two single-timescale single-loop algorithms that require only one data point each step.
Our results are expressed in a form of simultaneous primal and dual side convergence.
arXiv Detail & Related papers (2020-08-23T20:36:49Z) - Provably Convergent Working Set Algorithm for Non-Convex Regularized
Regression [0.0]
This paper proposes a working set algorithm for non-regular regularizers with convergence guarantees.
Our results demonstrate high gain compared to the full problem solver for both block-coordinates or a gradient solver.
arXiv Detail & Related papers (2020-06-24T07:40:31Z) - Convergence of adaptive algorithms for weakly convex constrained
optimization [59.36386973876765]
We prove the $mathcaltilde O(t-1/4)$ rate of convergence for the norm of the gradient of Moreau envelope.
Our analysis works with mini-batch size of $1$, constant first and second order moment parameters, and possibly smooth optimization domains.
arXiv Detail & Related papers (2020-06-11T17:43:19Z) - Explicit Regularization of Stochastic Gradient Methods through Duality [9.131027490864938]
We propose randomized Dykstra-style algorithms based on randomized dual coordinate ascent.
For accelerated coordinate descent, we obtain a new algorithm that has better convergence properties than existing gradient methods in the interpolating regime.
arXiv Detail & Related papers (2020-03-30T20:44:56Z) - Towards Better Understanding of Adaptive Gradient Algorithms in
Generative Adversarial Nets [71.05306664267832]
Adaptive algorithms perform gradient updates using the history of gradients and are ubiquitous in training deep neural networks.
In this paper we analyze a variant of OptimisticOA algorithm for nonconcave minmax problems.
Our experiments show that adaptive GAN non-adaptive gradient algorithms can be observed empirically.
arXiv Detail & Related papers (2019-12-26T22:10:10Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.