Diffusion-LM Improves Controllable Text Generation
- URL: http://arxiv.org/abs/2205.14217v1
- Date: Fri, 27 May 2022 20:12:09 GMT
- Title: Diffusion-LM Improves Controllable Text Generation
- Authors: Xiang Lisa Li, John Thickstun, Ishaan Gulrajani, Percy Liang,
Tatsunori B. Hashimoto
- Abstract summary: Controlling the behavior of language models (LMs) without re-training is a major open problem in natural language generation.
We develop a new non-autoregressive language model based on continuous diffusions that we call Diffusion-LM.
We demonstrate successful control of Diffusion-LM for six challenging fine-grained control tasks, significantly outperforming prior work.
- Score: 80.50044830018442
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Controlling the behavior of language models (LMs) without re-training is a
major open problem in natural language generation. While recent works have
demonstrated successes on controlling simple sentence attributes (e.g.,
sentiment), there has been little progress on complex, fine-grained controls
(e.g., syntactic structure). To address this challenge, we develop a new
non-autoregressive language model based on continuous diffusions that we call
Diffusion-LM. Building upon the recent successes of diffusion models in
continuous domains, Diffusion-LM iteratively denoises a sequence of Gaussian
vectors into word vectors, yielding a sequence of intermediate latent
variables. The continuous, hierarchical nature of these intermediate variables
enables a simple gradient-based algorithm to perform complex, controllable
generation tasks. We demonstrate successful control of Diffusion-LM for six
challenging fine-grained control tasks, significantly outperforming prior work.
Related papers
- MAVIN: Multi-Action Video Generation with Diffusion Models via Transition Video Infilling [19.004339956475498]
MAVIN is designed to generate transition videos that seamlessly connect two given videos, forming a cohesive integrated sequence.
We introduce a new metric, CLIP-RS (CLIP Relative Smoothness), to evaluate temporal coherence and smoothness, complementing traditional quality-based metrics.
Experimental results on horse and tiger scenarios demonstrate MAVIN's superior performance in generating smooth and coherent video transitions.
arXiv Detail & Related papers (2024-05-28T09:46:09Z) - Language Rectified Flow: Advancing Diffusion Language Generation with Probabilistic Flows [53.31856123113228]
This paper proposes Language Rectified Flow (ours)
Our method is based on the reformulation of the standard probabilistic flow models.
Experiments and ablation studies demonstrate that our method can be general, effective, and beneficial for many NLP tasks.
arXiv Detail & Related papers (2024-03-25T17:58:22Z) - Quantized Embedding Vectors for Controllable Diffusion Language Models [1.3287140837287783]
Quantized Embedding Controllable Diffusion Language Model improves controllability, portability, and inference speed of language models.
QE-CDLM builds upon the recent successful controllable DLMs by remodeling the task-specific embedding space via quantization.
arXiv Detail & Related papers (2024-02-15T17:02:48Z) - Instruction Position Matters in Sequence Generation with Large Language
Models [67.87516654892343]
Large language models (LLMs) are capable of performing conditional sequence generation tasks, such as translation or summarization.
We propose enhancing the instruction-following capability of LLMs by shifting the position of task instructions after the input sentences.
arXiv Detail & Related papers (2023-08-23T12:36:57Z) - TESS: Text-to-Text Self-Conditioned Simplex Diffusion [56.881170312435444]
Text-to-text Self-conditioned Simplex Diffusion employs a new form of self-conditioning, and applies the diffusion process on the logit simplex space rather than the learned embedding space.
We demonstrate that TESS outperforms state-of-the-art non-autoregressive models, requires fewer diffusion steps with minimal drop in performance, and is competitive with pretrained autoregressive sequence-to-sequence models.
arXiv Detail & Related papers (2023-05-15T06:33:45Z) - A Cheaper and Better Diffusion Language Model with Soft-Masked Noise [62.719656543880596]
Masked-Diffuse LM is a novel diffusion model for language modeling, inspired by linguistic features in languages.
Specifically, we design a linguistic-informed forward process which adds corruptions to the text through strategically soft-masking to better noise the textual data.
We demonstrate that our Masked-Diffuse LM can achieve better generation quality than the state-of-the-art diffusion models with better efficiency.
arXiv Detail & Related papers (2023-04-10T17:58:42Z) - DiffusionBERT: Improving Generative Masked Language Models with
Diffusion Models [81.84866217721361]
DiffusionBERT is a new generative masked language model based on discrete diffusion models.
We propose a new noise schedule for the forward diffusion process that controls the degree of noise added at each step.
Experiments on unconditional text generation demonstrate that DiffusionBERT achieves significant improvement over existing diffusion models for text.
arXiv Detail & Related papers (2022-11-28T03:25:49Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.