Perceptually Optimized Color Selection for Visualization
- URL: http://arxiv.org/abs/2205.14472v1
- Date: Sat, 28 May 2022 16:16:36 GMT
- Title: Perceptually Optimized Color Selection for Visualization
- Authors: Subhrajyoti Maji and John Dingliana
- Abstract summary: We propose an approach for automatically selecting colors with optimum perceptual contrast for scientific visualization.
Our approach can assign colors with high perceptual contrast even for very high numbers of features, where other color selection methods typically fail.
- Score: 1.659989033959959
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We propose an approach, called the Equilibrium Distribution Model (EDM), for
automatically selecting colors with optimum perceptual contrast for scientific
visualization. Given any number of features that need to be emphasized in a
visualization task, our approach derives evenly distributed points in the
CIELAB color space to assign colors to the features so that the minimum
Euclidean Distance among the colors are optimized. Our approach can assign
colors with high perceptual contrast even for very high numbers of features,
where other color selection methods typically fail. We compare our approach
with the widely used Harmonic color selection scheme and demonstrate that while
the harmonic scheme can achieve reasonable color contrast for visualizing up to
20 different features, our Equilibrium scheme provides significantly better
contrast and achieves perceptible contrast for visualizing even up to 100
unique features.
Related papers
- CCC: Color Classified Colorization [0.0]
We formulate the colorization problem into a multinomial classification problem and then apply a weighted function to classes.
We propose a set of formulas to transform color values into color classes and vice versa.
We compare our proposed model with state-of-the-art models using five different datasets.
arXiv Detail & Related papers (2024-03-03T11:00:15Z) - Control Color: Multimodal Diffusion-based Interactive Image Colorization [81.68817300796644]
Control Color (Ctrl Color) is a multi-modal colorization method that leverages the pre-trained Stable Diffusion (SD) model.
We present an effective way to encode user strokes to enable precise local color manipulation.
We also introduce a novel module based on self-attention and a content-guided deformable autoencoder to address the long-standing issues of color overflow and inaccurate coloring.
arXiv Detail & Related papers (2024-02-16T17:51:13Z) - Color Aesthetics: Fuzzy based User-driven Method for Harmony and
Preference Prediction [0.0]
We propose a method for quantitative evaluation of all types of perceptual responses to color(s)
Preference for color schemes can be predicted by combining preferences for the basic colors and ratings of color harmony.
In the context of apparel coordination, it allows predicting a preference for a look based on clothing colors.
arXiv Detail & Related papers (2023-08-29T15:56:38Z) - DealMVC: Dual Contrastive Calibration for Multi-view Clustering [78.54355167448614]
We propose a novel Dual contrastive calibration network for Multi-View Clustering (DealMVC)
We first design a fusion mechanism to obtain a global cross-view feature. Then, a global contrastive calibration loss is proposed by aligning the view feature similarity graph and the high-confidence pseudo-label graph.
During the training procedure, the interacted cross-view feature is jointly optimized at both local and global levels.
arXiv Detail & Related papers (2023-08-17T14:14:28Z) - PalGAN: Image Colorization with Palette Generative Adversarial Networks [51.59276436217957]
We propose a new GAN-based colorization approach PalGAN, integrated with palette estimation and chromatic attention.
PalGAN outperforms state-of-the-arts in quantitative evaluation and visual comparison, delivering notable diverse, contrastive, and edge-preserving appearances.
arXiv Detail & Related papers (2022-10-20T12:28:31Z) - Cross-Camera Deep Colorization [10.254243409261898]
We propose an end-to-end convolutional neural network to align and fuse images from a color-plus-mono dual-camera system.
Our method consistently achieves substantial improvements, i.e., around 10dB PSNR gain.
arXiv Detail & Related papers (2022-08-26T11:02:14Z) - Series Photo Selection via Multi-view Graph Learning [52.33318426088579]
Series photo selection (SPS) is an important branch of the image aesthetics quality assessment.
We leverage a graph neural network to construct the relationships between multi-view features.
A siamese network is proposed to select the best one from a series of nearly identical photos.
arXiv Detail & Related papers (2022-03-18T04:23:25Z) - Underwater Image Enhancement via Medium Transmission-Guided Multi-Color
Space Embedding [88.46682991985907]
We present an underwater image enhancement network via medium transmission-guided multi-color space embedding, called Ucolor.
Our network can effectively improve the visual quality of underwater images by exploiting multiple color spaces embedding.
arXiv Detail & Related papers (2021-04-27T07:35:30Z) - Underwater Image Color Correction by Complementary Adaptation [0.0]
We propose a novel approach for underwater image color correction based on a Tikhonov type optimization model in the CIELAB color space.
Understood as a long-term adaptive process, our method effectively removes the underwater color cast and yields a balanced color distribution.
arXiv Detail & Related papers (2020-10-21T03:59:22Z) - Probabilistic Color Constancy [88.85103410035929]
We define a framework for estimating the illumination of a scene by weighting the contribution of different image regions.
The proposed method achieves competitive performance, compared to the state-of-the-art, on INTEL-TAU dataset.
arXiv Detail & Related papers (2020-05-06T11:03:05Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.