A Character-Level Length-Control Algorithm for Non-Autoregressive
Sentence Summarization
- URL: http://arxiv.org/abs/2205.14522v1
- Date: Sat, 28 May 2022 21:09:53 GMT
- Title: A Character-Level Length-Control Algorithm for Non-Autoregressive
Sentence Summarization
- Authors: Puyuan Liu, Xiang Zhang, Lili Mou
- Abstract summary: Sentence summarization aims at compressing a long sentence into a short one that keeps the main gist, and has extensive real-world applications such as headline generation.
In our work, we address a new problem of explicit character-level length control for summarization, and propose a dynamic programming algorithm based on the Connectionist Temporal Classification (CTC) model.
- Score: 23.495225374478295
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Sentence summarization aims at compressing a long sentence into a short one
that keeps the main gist, and has extensive real-world applications such as
headline generation. In previous work, researchers have developed various
approaches to improve the ROUGE score, which is the main evaluation metric for
summarization, whereas controlling the summary length has not drawn much
attention. In our work, we address a new problem of explicit character-level
length control for summarization, and propose a dynamic programming algorithm
based on the Connectionist Temporal Classification (CTC) model. Results show
that our approach not only achieves higher ROUGE scores but also yields more
complete sentences.
Related papers
- GLIMMER: Incorporating Graph and Lexical Features in Unsupervised Multi-Document Summarization [13.61818620609812]
We propose a lightweight yet effective unsupervised approach called GLIMMER: a Graph and LexIcal features based unsupervised Multi-docuMEnt summaRization approach.
It first constructs a sentence graph from the source documents, then automatically identifies semantic clusters by mining low-level features from raw texts.
Experiments conducted on Multi-News, Multi-XScience and DUC-2004 demonstrate that our approach outperforms existing unsupervised approaches.
arXiv Detail & Related papers (2024-08-19T16:01:48Z) - Hierarchical Indexing for Retrieval-Augmented Opinion Summarization [60.5923941324953]
We propose a method for unsupervised abstractive opinion summarization that combines the attributability and scalability of extractive approaches with the coherence and fluency of Large Language Models (LLMs)
Our method, HIRO, learns an index structure that maps sentences to a path through a semantically organized discrete hierarchy.
At inference time, we populate the index and use it to identify and retrieve clusters of sentences containing popular opinions from input reviews.
arXiv Detail & Related papers (2024-03-01T10:38:07Z) - GUESR: A Global Unsupervised Data-Enhancement with Bucket-Cluster
Sampling for Sequential Recommendation [58.6450834556133]
We propose graph contrastive learning to enhance item representations with complex associations from the global view.
We extend the CapsNet module with the elaborately introduced target-attention mechanism to derive users' dynamic preferences.
Our proposed GUESR could not only achieve significant improvements but also could be regarded as a general enhancement strategy.
arXiv Detail & Related papers (2023-03-01T05:46:36Z) - Learning Non-Autoregressive Models from Search for Unsupervised Sentence
Summarization [20.87460375478907]
Text summarization aims to generate a short summary for an input text.
In this work, we propose a Non-Autoregressive Unsupervised Summarization approach.
Experiments show that NAUS achieves state-of-the-art performance for unsupervised summarization.
arXiv Detail & Related papers (2022-05-28T21:09:23Z) - SNaC: Coherence Error Detection for Narrative Summarization [73.48220043216087]
We introduce SNaC, a narrative coherence evaluation framework rooted in fine-grained annotations for long summaries.
We develop a taxonomy of coherence errors in generated narrative summaries and collect span-level annotations for 6.6k sentences across 150 book and movie screenplay summaries.
Our work provides the first characterization of coherence errors generated by state-of-the-art summarization models and a protocol for eliciting coherence judgments from crowd annotators.
arXiv Detail & Related papers (2022-05-19T16:01:47Z) - The Summary Loop: Learning to Write Abstractive Summaries Without
Examples [21.85348918324668]
This work presents a new approach to unsupervised abstractive summarization based on maximizing a combination of coverage and fluency for a given length constraint.
Key terms are masked out of the original document and must be filled in by a coverage model using the current generated summary.
When tested on popular news summarization datasets, the method outperforms previous unsupervised methods by more than 2 R-1 points.
arXiv Detail & Related papers (2021-05-11T23:19:46Z) - Doubly Robust Off-Policy Actor-Critic: Convergence and Optimality [131.45028999325797]
We develop a doubly robust off-policy AC (DR-Off-PAC) for discounted MDP.
DR-Off-PAC adopts a single timescale structure, in which both actor and critics are updated simultaneously with constant stepsize.
We study the finite-time convergence rate and characterize the sample complexity for DR-Off-PAC to attain an $epsilon$-accurate optimal policy.
arXiv Detail & Related papers (2021-02-23T18:56:13Z) - Experiments in Extractive Summarization: Integer Linear Programming,
Term/Sentence Scoring, and Title-driven Models [1.3286165491120467]
We describe a new framework, NewsSumm, that includes many existing and new approaches for summarization including ILP and title-driven approaches.
We show that the new title-driven reduction idea leads to improvement in performance for both unsupervised and supervised approaches considered.
arXiv Detail & Related papers (2020-08-01T01:05:55Z) - SummPip: Unsupervised Multi-Document Summarization with Sentence Graph
Compression [61.97200991151141]
SummPip is an unsupervised method for multi-document summarization.
We convert the original documents to a sentence graph, taking both linguistic and deep representation into account.
We then apply spectral clustering to obtain multiple clusters of sentences, and finally compress each cluster to generate the final summary.
arXiv Detail & Related papers (2020-07-17T13:01:15Z) - Discrete Optimization for Unsupervised Sentence Summarization with
Word-Level Extraction [31.648764677078837]
Automatic sentence summarization produces a shorter version of a sentence, while preserving its most important information.
We model these two aspects in an unsupervised objective function, consisting of language modeling and semantic similarity metrics.
Our proposed method achieves a new state-of-the art for unsupervised sentence summarization according to ROUGE scores.
arXiv Detail & Related papers (2020-05-04T19:01:55Z) - Pseudo-Convolutional Policy Gradient for Sequence-to-Sequence
Lip-Reading [96.48553941812366]
Lip-reading aims to infer the speech content from the lip movement sequence.
Traditional learning process of seq2seq models suffers from two problems.
We propose a novel pseudo-convolutional policy gradient (PCPG) based method to address these two problems.
arXiv Detail & Related papers (2020-03-09T09:12:26Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.