Embedding Graphs on Grassmann Manifold
- URL: http://arxiv.org/abs/2205.15068v1
- Date: Mon, 30 May 2022 12:56:24 GMT
- Title: Embedding Graphs on Grassmann Manifold
- Authors: Bingxin Zhou, Xuebin Zheng, Yu Guang Wang, Ming Li, Junbin Gao
- Abstract summary: This paper develops a new graph representation learning scheme, namely EGG, which embeds approximated second-order graph characteristics into a Grassmann manifold.
The effectiveness of EGG is demonstrated using both clustering and classification tasks at the node level and graph level.
- Score: 31.42901131602713
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Learning efficient graph representation is the key to favorably addressing
downstream tasks on graphs, such as node or graph property prediction. Given
the non-Euclidean structural property of graphs, preserving the original graph
data's similarity relationship in the embedded space needs specific tools and a
similarity metric. This paper develops a new graph representation learning
scheme, namely EGG, which embeds approximated second-order graph
characteristics into a Grassmann manifold. The proposed strategy leverages
graph convolutions to learn hidden representations of the corresponding
subspace of the graph, which is then mapped to a Grassmann point of a low
dimensional manifold through truncated singular value decomposition (SVD). The
established graph embedding approximates denoised correlationship of node
attributes, as implemented in the form of a symmetric matrix space for
Euclidean calculation. The effectiveness of EGG is demonstrated using both
clustering and classification tasks at the node level and graph level. It
outperforms baseline models on various benchmarks.
Related papers
- Graph Transformer GANs with Graph Masked Modeling for Architectural
Layout Generation [153.92387500677023]
We present a novel graph Transformer generative adversarial network (GTGAN) to learn effective graph node relations.
The proposed graph Transformer encoder combines graph convolutions and self-attentions in a Transformer to model both local and global interactions.
We also propose a novel self-guided pre-training method for graph representation learning.
arXiv Detail & Related papers (2024-01-15T14:36:38Z) - Deep Manifold Graph Auto-Encoder for Attributed Graph Embedding [51.75091298017941]
This paper proposes a novel Deep Manifold (Variational) Graph Auto-Encoder (DMVGAE/DMGAE) for attributed graph data.
The proposed method surpasses state-of-the-art baseline algorithms by a significant margin on different downstream tasks across popular datasets.
arXiv Detail & Related papers (2024-01-12T17:57:07Z) - Structure-free Graph Condensation: From Large-scale Graphs to Condensed
Graph-free Data [91.27527985415007]
Existing graph condensation methods rely on the joint optimization of nodes and structures in the condensed graph.
We advocate a new Structure-Free Graph Condensation paradigm, named SFGC, to distill a large-scale graph into a small-scale graph node set.
arXiv Detail & Related papers (2023-06-05T07:53:52Z) - Demystifying Graph Convolution with a Simple Concatenation [6.542119695695405]
We quantify the information overlap between graph topology, node features, and labels.
We show that graph concatenation is a simple but more flexible alternative to graph convolution.
arXiv Detail & Related papers (2022-07-18T16:39:33Z) - A Representation Learning Framework for Property Graphs [33.04077644004356]
We propose PGE, a graph representation learning framework that incorporates both node and edge properties into the graph embedding procedure.
We show how PGE achieves better embedding results than the state-of-the-art graph embedding methods on benchmark applications such as node classification and link prediction over real-world datasets.
arXiv Detail & Related papers (2022-06-27T10:36:57Z) - Accurate Learning of Graph Representations with Graph Multiset Pooling [45.72542969364438]
We propose a Graph Multiset Transformer (GMT) that captures the interaction between nodes according to their structural dependencies.
Our experimental results show that GMT significantly outperforms state-of-the-art graph pooling methods on graph classification benchmarks.
arXiv Detail & Related papers (2021-02-23T07:45:58Z) - Line Graph Neural Networks for Link Prediction [71.00689542259052]
We consider the graph link prediction task, which is a classic graph analytical problem with many real-world applications.
In this formalism, a link prediction problem is converted to a graph classification task.
We propose to seek a radically different and novel path by making use of the line graphs in graph theory.
In particular, each node in a line graph corresponds to a unique edge in the original graph. Therefore, link prediction problems in the original graph can be equivalently solved as a node classification problem in its corresponding line graph, instead of a graph classification task.
arXiv Detail & Related papers (2020-10-20T05:54:31Z) - Graph Pooling with Node Proximity for Hierarchical Representation
Learning [80.62181998314547]
We propose a novel graph pooling strategy that leverages node proximity to improve the hierarchical representation learning of graph data with their multi-hop topology.
Results show that the proposed graph pooling strategy is able to achieve state-of-the-art performance on a collection of public graph classification benchmark datasets.
arXiv Detail & Related papers (2020-06-19T13:09:44Z) - Wasserstein Embedding for Graph Learning [33.90471037116372]
Wasserstein Embedding for Graph Learning (WEGL) is a framework for embedding entire graphs in a vector space.
We leverage new insights on defining similarity between graphs as a function of the similarity between their node embedding distributions.
We evaluate our new graph embedding approach on various benchmark graph-property prediction tasks.
arXiv Detail & Related papers (2020-06-16T18:23:00Z) - Unsupervised Graph Embedding via Adaptive Graph Learning [85.28555417981063]
Graph autoencoders (GAEs) are powerful tools in representation learning for graph embedding.
In this paper, two novel unsupervised graph embedding methods, unsupervised graph embedding via adaptive graph learning (BAGE) and unsupervised graph embedding via variational adaptive graph learning (VBAGE) are proposed.
Experimental studies on several datasets validate our design and demonstrate that our methods outperform baselines by a wide margin in node clustering, node classification, and graph visualization tasks.
arXiv Detail & Related papers (2020-03-10T02:33:14Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.