Simulator-Based Inference with Waldo: Confidence Regions by Leveraging
Prediction Algorithms and Posterior Estimators for Inverse Problems
- URL: http://arxiv.org/abs/2205.15680v4
- Date: Mon, 13 Nov 2023 16:46:24 GMT
- Title: Simulator-Based Inference with Waldo: Confidence Regions by Leveraging
Prediction Algorithms and Posterior Estimators for Inverse Problems
- Authors: Luca Masserano, Tommaso Dorigo, Rafael Izbicki, Mikael Kuusela, Ann B.
Lee
- Abstract summary: WALDO is a novel method to construct confidence regions with finite-sample conditional validity.
We apply our method to a recent high-energy physics problem, where prediction with deep neural networks has previously led to estimates with prediction bias.
- Score: 4.212344009251363
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Prediction algorithms, such as deep neural networks (DNNs), are used in many
domain sciences to directly estimate internal parameters of interest in
simulator-based models, especially in settings where the observations include
images or complex high-dimensional data. In parallel, modern neural density
estimators, such as normalizing flows, are becoming increasingly popular for
uncertainty quantification, especially when both parameters and observations
are high-dimensional. However, parameter inference is an inverse problem and
not a prediction task; thus, an open challenge is to construct conditionally
valid and precise confidence regions, with a guaranteed probability of covering
the true parameters of the data-generating process, no matter what the
(unknown) parameter values are, and without relying on large-sample theory.
Many simulator-based inference (SBI) methods are indeed known to produce biased
or overly confident parameter regions, yielding misleading uncertainty
estimates. This paper presents WALDO, a novel method to construct confidence
regions with finite-sample conditional validity by leveraging prediction
algorithms or posterior estimators that are currently widely adopted in SBI.
WALDO reframes the well-known Wald test statistic, and uses a computationally
efficient regression-based machinery for classical Neyman inversion of
hypothesis tests. We apply our method to a recent high-energy physics problem,
where prediction with DNNs has previously led to estimates with prediction
bias. We also illustrate how our approach can correct overly confident
posterior regions computed with normalizing flows.
Related papers
- Non-Asymptotic Uncertainty Quantification in High-Dimensional Learning [5.318766629972959]
Uncertainty quantification is a crucial but challenging task in many high-dimensional regression or learning problems.
We develop a new data-driven approach for UQ in regression that applies both to classical regression approaches as well as to neural networks.
arXiv Detail & Related papers (2024-07-18T16:42:10Z) - Inflationary Flows: Calibrated Bayesian Inference with Diffusion-Based Models [0.0]
We show how diffusion-based models can be repurposed for performing principled, identifiable Bayesian inference.
We show how such maps can be learned via standard DBM training using a novel noise schedule.
The result is a class of highly expressive generative models, uniquely defined on a low-dimensional latent space.
arXiv Detail & Related papers (2024-07-11T19:58:19Z) - Tractable Function-Space Variational Inference in Bayesian Neural
Networks [72.97620734290139]
A popular approach for estimating the predictive uncertainty of neural networks is to define a prior distribution over the network parameters.
We propose a scalable function-space variational inference method that allows incorporating prior information.
We show that the proposed method leads to state-of-the-art uncertainty estimation and predictive performance on a range of prediction tasks.
arXiv Detail & Related papers (2023-12-28T18:33:26Z) - Calibrating Neural Simulation-Based Inference with Differentiable
Coverage Probability [50.44439018155837]
We propose to include a calibration term directly into the training objective of the neural model.
By introducing a relaxation of the classical formulation of calibration error we enable end-to-end backpropagation.
It is directly applicable to existing computational pipelines allowing reliable black-box posterior inference.
arXiv Detail & Related papers (2023-10-20T10:20:45Z) - Improved uncertainty quantification for neural networks with Bayesian
last layer [0.0]
Uncertainty quantification is an important task in machine learning.
We present a reformulation of the log-marginal likelihood of a NN with BLL which allows for efficient training using backpropagation.
arXiv Detail & Related papers (2023-02-21T20:23:56Z) - Density Regression and Uncertainty Quantification with Bayesian Deep
Noise Neural Networks [4.376565880192482]
Deep neural network (DNN) models have achieved state-of-the-art predictive accuracy in a wide range of supervised learning applications.
accurately quantifying the uncertainty in DNN predictions remains a challenging task.
We propose the Bayesian Deep Noise Neural Network (B-DeepNoise), which generalizes standard Bayesian DNNs by extending the random noise variable to all hidden layers.
We evaluate B-DeepNoise against existing methods on benchmark regression datasets, demonstrating its superior performance in terms of prediction accuracy, uncertainty quantification accuracy, and uncertainty quantification efficiency.
arXiv Detail & Related papers (2022-06-12T02:47:29Z) - The Unreasonable Effectiveness of Deep Evidential Regression [72.30888739450343]
A new approach with uncertainty-aware regression-based neural networks (NNs) shows promise over traditional deterministic methods and typical Bayesian NNs.
We detail the theoretical shortcomings and analyze the performance on synthetic and real-world data sets, showing that Deep Evidential Regression is a quantification rather than an exact uncertainty.
arXiv Detail & Related papers (2022-05-20T10:10:32Z) - Stochastic Neural Radiance Fields:Quantifying Uncertainty in Implicit 3D
Representations [19.6329380710514]
Uncertainty quantification is a long-standing problem in Machine Learning.
We propose Neural Radiance Fields (S-NeRF), a generalization of standard NeRF that learns a probability distribution over all the possible fields modeling the scene.
S-NeRF is able to provide more reliable predictions and confidence values than generic approaches previously proposed for uncertainty estimation in other domains.
arXiv Detail & Related papers (2021-09-05T16:56:43Z) - Quantifying Uncertainty in Deep Spatiotemporal Forecasting [67.77102283276409]
We describe two types of forecasting problems: regular grid-based and graph-based.
We analyze UQ methods from both the Bayesian and the frequentist point view, casting in a unified framework via statistical decision theory.
Through extensive experiments on real-world road network traffic, epidemics, and air quality forecasting tasks, we reveal the statistical computational trade-offs for different UQ methods.
arXiv Detail & Related papers (2021-05-25T14:35:46Z) - Improving Uncertainty Calibration via Prior Augmented Data [56.88185136509654]
Neural networks have proven successful at learning from complex data distributions by acting as universal function approximators.
They are often overconfident in their predictions, which leads to inaccurate and miscalibrated probabilistic predictions.
We propose a solution by seeking out regions of feature space where the model is unjustifiably overconfident, and conditionally raising the entropy of those predictions towards that of the prior distribution of the labels.
arXiv Detail & Related papers (2021-02-22T07:02:37Z) - Unlabelled Data Improves Bayesian Uncertainty Calibration under
Covariate Shift [100.52588638477862]
We develop an approximate Bayesian inference scheme based on posterior regularisation.
We demonstrate the utility of our method in the context of transferring prognostic models of prostate cancer across globally diverse populations.
arXiv Detail & Related papers (2020-06-26T13:50:19Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.