Quantum Error Mitigation by Pauli Check Sandwiching
- URL: http://arxiv.org/abs/2206.00215v3
- Date: Fri, 13 Jan 2023 08:25:23 GMT
- Title: Quantum Error Mitigation by Pauli Check Sandwiching
- Authors: Alvin Gonzales and Ruslan Shaydulin and Zain Saleem and Martin Suchara
- Abstract summary: We describe and analyze an error mitigation technique that uses multiple pairs of parity checks to detect the presence of errors.
We build on the results on extended flag gadgets and put it on a firm theoretical foundation.
- Score: 4.419800664096479
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We describe and analyze an error mitigation technique that uses multiple
pairs of parity checks to detect the presence of errors. Each pair of checks
uses one ancilla qubit to detect a component of the error operator and
represents one layer of the technique. We build on the results on extended flag
gadgets and put it on a firm theoretical foundation. We prove that this
technique can recover the noiseless state under the assumption of noise not
affecting the checks. The method does not incur any encoding overhead and
instead chooses the checks based on the input circuit. We provide an algorithm
for obtaining such checks for an arbitrary target circuit. Since the method
applies to any circuit and input state, it can be easily combined with other
error mitigation techniques. We evaluate the performance of the proposed
methods using extensive numerical simulations on 1,850 random input circuits
composed of Clifford gates and non-Clifford single-qubit rotations, a class of
circuits encompassing most commonly considered variational algorithm circuits.
We observe average improvements in fidelity of 34 percentage points with six
layers of checks.
Related papers
- Low-overhead error detection with spacetime codes [1.3689968346415426]
We introduce a low-overhead approach for detecting errors in arbitrary Clifford circuits on arbitrary qubit connectivities.
We show our algorithm can efficiently find checks in universal circuits, but the space of valid checks diminishes exponentially with the non-Cliffordness of the circuit.
arXiv Detail & Related papers (2025-04-22T09:20:25Z) - Space-Efficient Quantum Error Reduction without log Factors [50.10645865330582]
We present a new highly simplified construction of a purifier, that can be understood as a weighted walk on a line similar to a random walk interpretation of majority voting.
Our purifier has exponentially better space complexity than the previous one, and quadratically better dependence on the soundness-completeness gap of the algorithm being purified.
arXiv Detail & Related papers (2025-02-13T12:04:39Z) - Exact Decoding of Repetition Code under Circuit Level Noise [8.281330924913446]
Repetition code forms a fundamental basis for quantum error correction experiments.
Current methods for decoding repetition codes under circuit level noise are suboptimal.
We propose an optimal maximum likelihood decoding algorithm called planar.
arXiv Detail & Related papers (2025-01-07T07:14:01Z) - Simple and Provable Scaling Laws for the Test-Time Compute of Large Language Models [70.07661254213181]
We propose two principled algorithms for the test-time compute of large language models.
We prove theoretically that the failure probability of one algorithm decays to zero exponentially as its test-time compute grows.
arXiv Detail & Related papers (2024-11-29T05:29:47Z) - Practical implementation of a single-qubit rotation algorithm [0.0]
The Toffoli is an important universal quantum gate, and will alongside the Clifford gates be available in future Fault-Tolerant Quantum Computing hardware.
We evaluate the performance of a recently proposed single-qubit rotation algorithm using the Clifford+Toffoli gate set.
arXiv Detail & Related papers (2024-10-24T13:53:21Z) - Finding Transformer Circuits with Edge Pruning [71.12127707678961]
We propose Edge Pruning as an effective and scalable solution to automated circuit discovery.
Our method finds circuits in GPT-2 that use less than half the number of edges compared to circuits found by previous methods.
Thanks to its efficiency, we scale Edge Pruning to CodeLlama-13B, a model over 100x the scale that prior methods operate on.
arXiv Detail & Related papers (2024-06-24T16:40:54Z) - Inverted-circuit zero-noise extrapolation for quantum gate error mitigation [0.0]
We propose a simple method for estimating the strength of errors occurring in a quantum circuit.
The method determines the error strength for a circuit by appending to it the inverted circuit and measuring the probability of the initial state.
Our method proves to be particularly effective on current hardware, showcasing its suitability for near-term quantum computing applications.
arXiv Detail & Related papers (2024-03-03T20:27:27Z) - Mitigating Quantum Gate Errors for Variational Eigensolvers Using Hardware-Inspired Zero-Noise Extrapolation [0.0]
We develop a recipe for mitigating quantum gate errors for variational algorithms using zero-noise extrapolation.
We utilize the fact that gate errors in a physical quantum device are distributed inhomogeneously over different qubits and qubit pairs.
We find that the estimated energy in the variational approach is approximately linear with respect to the circuit error sum.
arXiv Detail & Related papers (2023-07-20T18:00:03Z) - Scalable noisy quantum circuits for biased-noise qubits [37.69303106863453]
We consider biased-noise qubits affected only by bit-flip errors, which is motivated by existing systems of stabilized cat qubits.
For realistic noise models, phase-flip will not be negligible, but in the Pauli-Twirling approximation, we show that our benchmark could check the correctness of circuits containing up to $106$ gates.
arXiv Detail & Related papers (2023-05-03T11:27:50Z) - Single-shot error mitigation by coherent Pauli checks [6.992823294269743]
We show how to generate samples from the output distribution of a quantum circuit without full-blown error correction.
Our approach is based on Coherent Pauli Checks that detect errors in a Clifford circuit.
arXiv Detail & Related papers (2022-12-07T20:03:07Z) - A Quantum Algorithm for Computing All Diagnoses of a Switching Circuit [73.70667578066775]
Faults are by nature while most man-made systems, and especially computers, work deterministically.
This paper provides such a connecting via quantum information theory which is an intuitive approach as quantum physics obeys probability laws.
arXiv Detail & Related papers (2022-09-08T17:55:30Z) - Finding the disjointness of stabilizer codes is NP-complete [77.34726150561087]
We show that the problem of calculating the $c-disjointness, or even approximating it to within a constant multiplicative factor, is NP-complete.
We provide bounds on the disjointness for various code families, including the CSS codes,$d codes and hypergraph codes.
Our results indicate that finding fault-tolerant logical gates for generic quantum error-correcting codes is a computationally challenging task.
arXiv Detail & Related papers (2021-08-10T15:00:20Z) - Fault-tolerant parity readout on a shuttling-based trapped-ion quantum
computer [64.47265213752996]
We experimentally demonstrate a fault-tolerant weight-4 parity check measurement scheme.
We achieve a flag-conditioned parity measurement single-shot fidelity of 93.2(2)%.
The scheme is an essential building block in a broad class of stabilizer quantum error correction protocols.
arXiv Detail & Related papers (2021-07-13T20:08:04Z) - Autoregressive Belief Propagation for Decoding Block Codes [113.38181979662288]
We revisit recent methods that employ graph neural networks for decoding error correcting codes.
Our method violates the symmetry conditions that enable the other methods to train exclusively with the zero-word.
Despite not having the luxury of training on a single word, and the inability to train on more than a small fraction of the relevant sample space, we demonstrate effective training.
arXiv Detail & Related papers (2021-01-23T17:14:55Z) - Efficient and robust certification of genuine multipartite entanglement
in noisy quantum error correction circuits [58.720142291102135]
We introduce a conditional witnessing technique to certify genuine multipartite entanglement (GME)
We prove that the detection of entanglement in a linear number of bipartitions by a number of measurements scales linearly, suffices to certify GME.
We apply our method to the noisy readout of stabilizer operators of the distance-three topological color code and its flag-based fault-tolerant version.
arXiv Detail & Related papers (2020-10-06T18:00:07Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.