Experimental demonstration of topological bounds in quantum metrology
- URL: http://arxiv.org/abs/2206.00546v3
- Date: Sat, 19 Nov 2022 10:43:44 GMT
- Title: Experimental demonstration of topological bounds in quantum metrology
- Authors: Min Yu, Xiangbei Li, Yaoming Chu, Bruno Mera, F. Nur \"Unal, Pengcheng
Yang, Yu Liu, Nathan Goldman, Jianming Cai
- Abstract summary: We prove that the Berry curvature and Chern numbers of band structures can dictate strict lower bounds on metrological properties.
Our work opens the door to metrological applications empowered by topology, with potential implications for quantum many-body systems.
- Score: 10.98437608071324
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Quantum metrology is deeply connected to quantum geometry, through the
fundamental notion of quantum Fisher information. Inspired by advances in
topological matter, it was recently suggested that the Berry curvature and
Chern numbers of band structures can dictate strict lower bounds on
metrological properties, hence establishing a strong connection between
topology and quantum metrology. In this work, we provide a first experimental
verification of such topological bounds, by performing optimal quantum
multi-parameter estimation and achieving the best possible measurement
precision. By emulating the band structure of a Chern insulator, we
experimentally determine the metrological potential across a topological phase
transition, and demonstrate strong enhancement in the topologically non-trivial
regime. Our work opens the door to metrological applications empowered by
topology, with potential implications for quantum many-body systems.
Related papers
- Measurable entanglement criterion for extended Bose-Hubbard model [0.0]
Cold atoms in optical lattice represent a quantum system of fundamental importance.
We present an entanglement criterion characterizing collective entanglement among lattice sites.
Our criterion witnesses phase transitions such as Mott insulator--superfluid and Mott insulator--charge density wave transitions.
arXiv Detail & Related papers (2024-02-08T08:09:14Z) - Non-Hermitian topological quantum states in a reservoir-engineered
transmon chain [0.0]
We show that a non-Hermitian quantum phase can be realized in a reservoir-engineered transmon chain.
We show that genuine quantum effects are observable in this system via robust and slowly decaying long-range quantum entanglement of the topological end modes.
arXiv Detail & Related papers (2022-10-06T15:21:21Z) - Approaching optimal entangling collective measurements on quantum
computing platforms [0.3665899982351484]
We show theoretically optimal single- and two-copy collective measurements for simultaneously estimating two non-commuting qubit rotations.
This allows us to implement quantum-enhanced sensing, for which the metrological gain persists for high levels of decoherence.
arXiv Detail & Related papers (2022-05-30T18:07:27Z) - Tuning long-range fermion-mediated interactions in cold-atom quantum
simulators [68.8204255655161]
Engineering long-range interactions in cold-atom quantum simulators can lead to exotic quantum many-body behavior.
Here, we propose several tuning knobs, accessible in current experimental platforms, that allow to further control the range and shape of the mediated interactions.
arXiv Detail & Related papers (2022-03-31T13:32:12Z) - Relating the topology of Dirac Hamiltonians to quantum geometry: When
the quantum metric dictates Chern numbers and winding numbers [0.0]
We establish relations between the quantum metric and the topological invariants of generic Dirac Hamiltonians.
We show that topological indices are bounded by the quantum volume determined by the quantum metric.
This work suggests unexplored topological responses and metrological applications in a broad class of quantum-engineered systems.
arXiv Detail & Related papers (2021-06-01T21:10:48Z) - Enhancement of quantum correlations and geometric phase for a driven
bipartite quantum system in a structured environment [77.34726150561087]
We study the role of driving in an initial maximally entangled state evolving under a structured environment.
This knowledge can aid the search for physical setups that best retain quantum properties under dissipative dynamics.
arXiv Detail & Related papers (2021-03-18T21:11:37Z) - Observing a Topological Transition in Weak-Measurement-Induced Geometric
Phases [55.41644538483948]
Weak measurements in particular, through their back-action on the system, may enable various levels of coherent control.
We measure the geometric phases induced by sequences of weak measurements and demonstrate a topological transition in the geometric phase controlled by measurement strength.
Our results open new horizons for measurement-enabled quantum control of many-body topological states.
arXiv Detail & Related papers (2021-02-10T19:00:00Z) - Unraveling the topology of dissipative quantum systems [58.720142291102135]
We discuss topology in dissipative quantum systems from the perspective of quantum trajectories.
We show for a broad family of translation-invariant collapse models that the set of dark state-inducing Hamiltonians imposes a nontrivial topological structure on the space of Hamiltonians.
arXiv Detail & Related papers (2020-07-12T11:26:02Z) - Exploring 2D synthetic quantum Hall physics with a quasi-periodically
driven qubit [58.720142291102135]
Quasi-periodically driven quantum systems are predicted to exhibit quantized topological properties.
We experimentally study a synthetic quantum Hall effect with a two-tone drive.
arXiv Detail & Related papers (2020-04-07T15:00:41Z) - Experimental Detection of the Quantum Phases of a Three-Dimensional
Topological Insulator on a Spin Quantum Simulator [4.614115414323219]
We investigate the three-dimensional topological insulators in the AIII (chiral unitary) symmetry class.
We experimentally demonstrate their topological properties, where a dynamical quenching approach is adopted.
As a result, the topological invariants are measured with high precision on the band-inversion surface.
arXiv Detail & Related papers (2020-01-15T03:51:48Z) - Probing chiral edge dynamics and bulk topology of a synthetic Hall
system [52.77024349608834]
Quantum Hall systems are characterized by the quantization of the Hall conductance -- a bulk property rooted in the topological structure of the underlying quantum states.
Here, we realize a quantum Hall system using ultracold dysprosium atoms, in a two-dimensional geometry formed by one spatial dimension.
We demonstrate that the large number of magnetic sublevels leads to distinct bulk and edge behaviors.
arXiv Detail & Related papers (2020-01-06T16:59:08Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.