Localized non-relativistic quantum systems in curved spacetimes: a
general characterization of particle detector models
- URL: http://arxiv.org/abs/2206.01225v3
- Date: Wed, 6 Mar 2024 20:01:42 GMT
- Title: Localized non-relativistic quantum systems in curved spacetimes: a
general characterization of particle detector models
- Authors: T. Rick Perche
- Abstract summary: We provide a consistent way of describing a localized non-relativistic quantum system undergoing a timelike trajectory in a curved spacetime.
This framework naturally provides a recipe for mapping a quantum theory defined in a non-relativistic background to a theory around a timelike trajectory in curved spacetimes.
We then apply our formalism to particle detector models, that is, to the case where the non-relativistic quantum system is coupled to a quantum field in a curved background.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In this manuscript we provide a consistent way of describing a localized
non-relativistic quantum system undergoing a timelike trajectory in a
background curved spacetime. Namely, using Fermi normal coordinates, we
identify an inner product and canonically conjugate position and momentum
operators defined in the rest space of the trajectory for each value of its
proper time. This framework then naturally provides a recipe for mapping a
quantum theory defined in a non-relativistic background to a theory around a
timelike trajectory in curved spacetimes. This is done by reinterpreting the
position and momentum operators and by introducing a local redshift factor to
the Hamiltonian, which gives rise to new dynamics due to the curvature of
spacetime and the acceleration of the trajectory. We then apply our formalism
to particle detector models, that is, to the case where the non-relativistic
quantum system is coupled to a quantum field in a curved background. This
allows one to write a general definition for particle detector models which is
able to recover the previous models in the literature. Our framework also
allows one to estimate the regime of validity of these models, characterizing
the situations where particle detectors can be used to accurately probe quantum
fields.
Related papers
- Integral quantization based on the Heisenberg-Weyl group [39.58317527488534]
We develop a framework of integral quantization applied to the motion of spinless particles in the four-dimensional Minkowski spacetime.
The proposed scheme is based on coherent states generated by the action of the Heisenberg-Weyl group.
A direct application of our model, including a computation of transition amplitudes between states characterized by fixed positions and momenta, is postponed to a forthcoming article.
arXiv Detail & Related papers (2024-10-31T14:36:38Z) - Particle Detectors from Localized Quantum Field Theories [0.0]
We present a fully relativistic model for localized probes in quantum field theory.
We show that it is possible to obtain particle detector models from localized quantum field theories.
arXiv Detail & Related papers (2023-08-22T18:00:00Z) - Emergent Quantum Mechanics at the Boundary of a Local Classical Lattice
Model [0.0]
We formulate a conceptually new model in which quantum mechanics emerges from classical mechanics.
We analytically estimate how much the model deviates from quantum mechanics.
arXiv Detail & Related papers (2022-07-19T18:00:00Z) - Neural-Network Quantum States for Periodic Systems in Continuous Space [66.03977113919439]
We introduce a family of neural quantum states for the simulation of strongly interacting systems in the presence of periodicity.
For one-dimensional systems we find very precise estimations of the ground-state energies and the radial distribution functions of the particles.
In two dimensions we obtain good estimations of the ground-state energies, comparable to results obtained from more conventional methods.
arXiv Detail & Related papers (2021-12-22T15:27:30Z) - Quantum particle across Grushin singularity [77.34726150561087]
We study the phenomenon of transmission across the singularity that separates the two half-cylinders.
All the local realisations of the free (Laplace-Beltrami) quantum Hamiltonian are examined as non-equivalent protocols of transmission/reflection.
This allows to comprehend the distinguished status of the so-called bridging' transmission protocol previously identified in the literature.
arXiv Detail & Related papers (2020-11-27T12:53:23Z) - Equivalence of approaches to relational quantum dynamics in relativistic
settings [68.8204255655161]
We show that the trinity' of relational quantum dynamics holds in relativistic settings per frequency superselection sector.
We ascribe the time according to the clock subsystem to a POVM which is covariant with respect to its (quadratic) Hamiltonian.
arXiv Detail & Related papers (2020-07-01T16:12:24Z) - State preparation and measurement in a quantum simulation of the O(3)
sigma model [65.01359242860215]
We show that fixed points of the non-linear O(3) sigma model can be reproduced near a quantum phase transition of a spin model with just two qubits per lattice site.
We apply Trotter methods to obtain results for the complexity of adiabatic ground state preparation in both the weak-coupling and quantum-critical regimes.
We present and analyze a quantum algorithm based on non-unitary randomized simulation methods.
arXiv Detail & Related papers (2020-06-28T23:44:12Z) - Zitterbewegung and Klein-tunneling phenomena for transient quantum waves [77.34726150561087]
We show that the Zitterbewegung effect manifests itself as a series of quantum beats of the particle density in the long-time limit.
We also find a time-domain where the particle density of the point source is governed by the propagation of a main wavefront.
The relative positions of these wavefronts are used to investigate the time-delay of quantum waves in the Klein-tunneling regime.
arXiv Detail & Related papers (2020-03-09T21:27:02Z) - Feynman Propagator for a System of Interacting Scalar Particles in the
Fokker Theory [62.997667081978825]
The functional integral on the generalized phase space is defined as the initial one in quantum theory.
The measure of integration in the generalized configuration space of world particle lines is determined.
A modification of the propagator is proposed, in which the role of independent time parameters is taken by the time coordinates of the particles in Minkowski space.
arXiv Detail & Related papers (2020-02-10T09:09:45Z) - General Relativistic Quantum Optics: Finite-size particle detector
models in curved spacetimes [0.0]
We show how effects related to accelerated motion of the detector and the curvature of spacetime influence the way different observers assign an interaction Hamiltonian between the detector and the field.
The fully covariant formulation explicitly leaves the physical predictions of the theory invariant under general coordinate transformations.
arXiv Detail & Related papers (2020-01-27T19:00:08Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.