Torsional Diffusion for Molecular Conformer Generation
- URL: http://arxiv.org/abs/2206.01729v1
- Date: Wed, 1 Jun 2022 04:30:41 GMT
- Title: Torsional Diffusion for Molecular Conformer Generation
- Authors: Bowen Jing, Gabriele Corso, Jeffrey Chang, Regina Barzilay, Tommi
Jaakkola
- Abstract summary: torsional diffusion is a novel diffusion framework that operates on the space of torsion angles.
On a standard benchmark of drug-like molecules, torsional diffusion generates superior conformer ensembles.
Our model provides exact likelihoods, which we employ to build the first generalizable Boltzmann generator.
- Score: 28.225704750892795
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Molecular conformer generation is a fundamental task in computational
chemistry. Several machine learning approaches have been developed, but none
have outperformed state-of-the-art cheminformatics methods. We propose
torsional diffusion, a novel diffusion framework that operates on the space of
torsion angles via a diffusion process on the hypertorus and an
extrinsic-to-intrinsic score model. On a standard benchmark of drug-like
molecules, torsional diffusion generates superior conformer ensembles compared
to machine learning and cheminformatics methods in terms of both RMSD and
chemical properties, and is orders of magnitude faster than previous
diffusion-based models. Moreover, our model provides exact likelihoods, which
we employ to build the first generalizable Boltzmann generator. Code is
available at https://github.com/gcorso/torsional-diffusion.
Related papers
- Conditional Synthesis of 3D Molecules with Time Correction Sampler [58.0834973489875]
Time-Aware Conditional Synthesis (TACS) is a novel approach to conditional generation on diffusion models.
It integrates adaptively controlled plug-and-play "online" guidance into a diffusion model, driving samples toward the desired properties.
arXiv Detail & Related papers (2024-11-01T12:59:25Z) - Text-Guided Multi-Property Molecular Optimization with a Diffusion Language Model [77.50732023411811]
We propose a text-guided multi-property molecular optimization method utilizing transformer-based diffusion language model (TransDLM)
TransDLM leverages standardized chemical nomenclature as semantic representations of molecules and implicitly embeds property requirements into textual descriptions.
Our approach surpasses state-of-the-art methods in optimizing molecular structural similarity and enhancing chemical properties on the benchmark dataset.
arXiv Detail & Related papers (2024-10-17T14:30:27Z) - MING: A Functional Approach to Learning Molecular Generative Models [46.189683355768736]
This paper introduces a novel paradigm for learning molecule generative models based on functional representations.
We propose Molecular Implicit Neural Generation (MING), a diffusion-based model that learns molecular distributions in function space.
arXiv Detail & Related papers (2024-10-16T13:02:02Z) - Derivative-Free Guidance in Continuous and Discrete Diffusion Models with Soft Value-Based Decoding [84.3224556294803]
Diffusion models excel at capturing the natural design spaces of images, molecules, DNA, RNA, and protein sequences.
We aim to optimize downstream reward functions while preserving the naturalness of these design spaces.
Our algorithm integrates soft value functions, which looks ahead to how intermediate noisy states lead to high rewards in the future.
arXiv Detail & Related papers (2024-08-15T16:47:59Z) - Zero Shot Molecular Generation via Similarity Kernels [0.6597195879147557]
We present Similarity-based Molecular Generation (SiMGen), a new method for zero shot molecular generation.
SiMGen combines a time-dependent similarity kernel with descriptors from a pretrained machine learning force field to generate molecules.
We also release an interactive web tool that allows users to generate structures with SiMGen online.
arXiv Detail & Related papers (2024-02-13T17:53:44Z) - Generative Modeling on Manifolds Through Mixture of Riemannian Diffusion Processes [57.396578974401734]
We introduce a principled framework for building a generative diffusion process on general manifold.
Instead of following the denoising approach of previous diffusion models, we construct a diffusion process using a mixture of bridge processes.
We develop a geometric understanding of the mixture process, deriving the drift as a weighted mean of tangent directions to the data points.
arXiv Detail & Related papers (2023-10-11T06:04:40Z) - Exploring Chemical Space with Score-based Out-of-distribution Generation [57.15855198512551]
We propose a score-based diffusion scheme that incorporates out-of-distribution control in the generative differential equation (SDE)
Since some novel molecules may not meet the basic requirements of real-world drugs, MOOD performs conditional generation by utilizing the gradients from a property predictor.
We experimentally validate that MOOD is able to explore the chemical space beyond the training distribution, generating molecules that outscore ones found with existing methods, and even the top 0.01% of the original training pool.
arXiv Detail & Related papers (2022-06-06T06:17:11Z) - A Score-based Geometric Model for Molecular Dynamics Simulations [33.158796937777886]
We propose a novel model called ScoreMD to estimate the gradient of the log density of molecular conformations.
With multiple architectural improvements, we outperforms state-of-the-art baselines on MD17 and isomers of C7O2H10.
This research provides new insights into the acceleration of new material and drug discovery.
arXiv Detail & Related papers (2022-04-19T05:13:46Z) - GeoDiff: a Geometric Diffusion Model for Molecular Conformation
Generation [102.85440102147267]
We propose a novel generative model named GeoDiff for molecular conformation prediction.
We show that GeoDiff is superior or comparable to existing state-of-the-art approaches.
arXiv Detail & Related papers (2022-03-06T09:47:01Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.