Stochastic Multiple Target Sampling Gradient Descent
- URL: http://arxiv.org/abs/2206.01934v1
- Date: Sat, 4 Jun 2022 07:54:35 GMT
- Title: Stochastic Multiple Target Sampling Gradient Descent
- Authors: Hoang Phan, Ngoc Tran, Trung Le, Toan Tran, Nhat Ho, Dinh Phung
- Abstract summary: Stein Variational Gradient Descent (SVGD) has been shown to be a powerful method that iteratively updates a set of particles to approximate the distribution of interest.
We propose Multiple Target Gradient Descent (MT-SGD), enabling us to sample from multiple unnormalized target distributions.
- Score: 25.261778039932402
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Sampling from an unnormalized target distribution is an essential problem
with many applications in probabilistic inference. Stein Variational Gradient
Descent (SVGD) has been shown to be a powerful method that iteratively updates
a set of particles to approximate the distribution of interest. Furthermore,
when analysing its asymptotic properties, SVGD reduces exactly to a
single-objective optimization problem and can be viewed as a probabilistic
version of this single-objective optimization problem. A natural question then
arises: "Can we derive a probabilistic version of the multi-objective
optimization?". To answer this question, we propose Stochastic Multiple Target
Sampling Gradient Descent (MT-SGD), enabling us to sample from multiple
unnormalized target distributions. Specifically, our MT-SGD conducts a flow of
intermediate distributions gradually orienting to multiple target
distributions, which allows the sampled particles to move to the joint
high-likelihood region of the target distributions. Interestingly, the
asymptotic analysis shows that our approach reduces exactly to the
multiple-gradient descent algorithm for multi-objective optimization, as
expected. Finally, we conduct comprehensive experiments to demonstrate the
merit of our approach to multi-task learning.
Related papers
- Adaptive Sampled Softmax with Inverted Multi-Index: Methods, Theory and Applications [79.53938312089308]
The MIDX-Sampler is a novel adaptive sampling strategy based on an inverted multi-index approach.
Our method is backed by rigorous theoretical analysis, addressing key concerns such as sampling bias, gradient bias, convergence rates, and generalization error bounds.
arXiv Detail & Related papers (2025-01-15T04:09:21Z) - Annealed Stein Variational Gradient Descent for Improved Uncertainty Estimation in Full-Waveform Inversion [25.714206592953545]
Variational Inference (VI) provides an approximate solution to the posterior distribution in the form of a parametric or non-parametric proposal distribution.
This study aims to improve the performance of VI within the context of Full-Waveform Inversion.
arXiv Detail & Related papers (2024-10-17T06:15:26Z) - O(d/T) Convergence Theory for Diffusion Probabilistic Models under Minimal Assumptions [6.76974373198208]
We establish a fast convergence theory for the denoising diffusion probabilistic model (DDPM) under minimal assumptions.
We show that the convergence rate improves to $O(k/T)$, where $k$ is the intrinsic dimension of the target data distribution.
This highlights the ability of DDPM to automatically adapt to unknown low-dimensional structures.
arXiv Detail & Related papers (2024-09-27T17:59:10Z) - Variational Learning of Gaussian Process Latent Variable Models through Stochastic Gradient Annealed Importance Sampling [22.256068524699472]
In this work, we propose an Annealed Importance Sampling (AIS) approach to address these issues.
We combine the strengths of Sequential Monte Carlo samplers and VI to explore a wider range of posterior distributions and gradually approach the target distribution.
Experimental results on both toy and image datasets demonstrate that our method outperforms state-of-the-art methods in terms of tighter variational bounds, higher log-likelihoods, and more robust convergence.
arXiv Detail & Related papers (2024-08-13T08:09:05Z) - Dynamical Measure Transport and Neural PDE Solvers for Sampling [77.38204731939273]
We tackle the task of sampling from a probability density as transporting a tractable density function to the target.
We employ physics-informed neural networks (PINNs) to approximate the respective partial differential equations (PDEs) solutions.
PINNs allow for simulation- and discretization-free optimization and can be trained very efficiently.
arXiv Detail & Related papers (2024-07-10T17:39:50Z) - Gaussian Mixture Solvers for Diffusion Models [84.83349474361204]
We introduce a novel class of SDE-based solvers called GMS for diffusion models.
Our solver outperforms numerous SDE-based solvers in terms of sample quality in image generation and stroke-based synthesis.
arXiv Detail & Related papers (2023-11-02T02:05:38Z) - Differentiating Metropolis-Hastings to Optimize Intractable Densities [51.16801956665228]
We develop an algorithm for automatic differentiation of Metropolis-Hastings samplers.
We apply gradient-based optimization to objectives expressed as expectations over intractable target densities.
arXiv Detail & Related papers (2023-06-13T17:56:02Z) - Outlier-Robust Sparse Mean Estimation for Heavy-Tailed Distributions [42.6763105645717]
Given a small number of corrupted samples, the goal is to efficiently compute a hypothesis that accurately approximates $mu$ with high probability.
Our algorithm achieves the optimal error using a number of samples scaling logarithmically with the ambient dimension.
Our analysis may be of independent interest, involving the delicate design of a (non-spectral) decomposition for positive semi-definite satisfying certain sparsity properties.
arXiv Detail & Related papers (2022-11-29T16:13:50Z) - Sampling from Arbitrary Functions via PSD Models [55.41644538483948]
We take a two-step approach by first modeling the probability distribution and then sampling from that model.
We show that these models can approximate a large class of densities concisely using few evaluations, and present a simple algorithm to effectively sample from these models.
arXiv Detail & Related papers (2021-10-20T12:25:22Z) - A Stochastic Newton Algorithm for Distributed Convex Optimization [62.20732134991661]
We analyze a Newton algorithm for homogeneous distributed convex optimization, where each machine can calculate gradients of the same population objective.
We show that our method can reduce the number, and frequency, of required communication rounds compared to existing methods without hurting performance.
arXiv Detail & Related papers (2021-10-07T17:51:10Z) - Runtime Analysis of Single- and Multi-Objective Evolutionary Algorithms for Chance Constrained Optimization Problems with Normally Distributed Random Variables [11.310502327308575]
We study the scenario of components that are independent and normally distributed.
We introduce a multi-objective formulation of the problem which trades off the expected cost and its variance.
We prove that this approach can also be used to compute a set of optimal solutions for the chance constrained minimum spanning tree problem.
arXiv Detail & Related papers (2021-09-13T09:24:23Z) - Achieving Efficiency in Black Box Simulation of Distribution Tails with
Self-structuring Importance Samplers [1.6114012813668934]
The paper presents a novel Importance Sampling (IS) scheme for estimating distribution of performance measures modeled with a rich set of tools such as linear programs, integer linear programs, piecewise linear/quadratic objectives, feature maps specified with deep neural networks, etc.
arXiv Detail & Related papers (2021-02-14T03:37:22Z) - Variational Transport: A Convergent Particle-BasedAlgorithm for Distributional Optimization [106.70006655990176]
A distributional optimization problem arises widely in machine learning and statistics.
We propose a novel particle-based algorithm, dubbed as variational transport, which approximately performs Wasserstein gradient descent.
We prove that when the objective function satisfies a functional version of the Polyak-Lojasiewicz (PL) (Polyak, 1963) and smoothness conditions, variational transport converges linearly.
arXiv Detail & Related papers (2020-12-21T18:33:13Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.