Federated Adversarial Training with Transformers
- URL: http://arxiv.org/abs/2206.02131v1
- Date: Sun, 5 Jun 2022 09:07:09 GMT
- Title: Federated Adversarial Training with Transformers
- Authors: Ahmed Aldahdooh, Wassim Hamidouche, Olivier D\'eforges
- Abstract summary: Federated learning (FL) has emerged to enable global model training over distributed clients' data while preserving its privacy.
This paper investigates feasibility with different federated model aggregation methods and different vision transformer models with different tokenization and classification head techniques.
- Score: 16.149924042225106
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Federated learning (FL) has emerged to enable global model training over
distributed clients' data while preserving its privacy. However, the global
trained model is vulnerable to the evasion attacks especially, the adversarial
examples (AEs), carefully crafted samples to yield false classification.
Adversarial training (AT) is found to be the most promising approach against
evasion attacks and it is widely studied for convolutional neural network
(CNN). Recently, vision transformers have been found to be effective in many
computer vision tasks. To the best of the authors' knowledge, there is no work
that studied the feasibility of AT in a FL process for vision transformers.
This paper investigates such feasibility with different federated model
aggregation methods and different vision transformer models with different
tokenization and classification head techniques. In order to improve the robust
accuracy of the models with the not independent and identically distributed
(Non-IID), we propose an extension to FedAvg aggregation method, called
FedWAvg. By measuring the similarities between the last layer of the global
model and the last layer of the client updates, FedWAvg calculates the weights
to aggregate the local models updates. The experiments show that FedWAvg
improves the robust accuracy when compared with other state-of-the-art
aggregation methods.
Related papers
Err
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.