Individual Privacy Accounting for Differentially Private Stochastic Gradient Descent
- URL: http://arxiv.org/abs/2206.02617v7
- Date: Thu, 25 Jul 2024 06:33:58 GMT
- Title: Individual Privacy Accounting for Differentially Private Stochastic Gradient Descent
- Authors: Da Yu, Gautam Kamath, Janardhan Kulkarni, Tie-Yan Liu, Jian Yin, Huishuai Zhang,
- Abstract summary: We characterize privacy guarantees for individual examples when releasing models trained by DP-SGD.
We find that most examples enjoy stronger privacy guarantees than the worst-case bound.
This implies groups that are underserved in terms of model utility simultaneously experience weaker privacy guarantees.
- Score: 69.14164921515949
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Differentially private stochastic gradient descent (DP-SGD) is the workhorse algorithm for recent advances in private deep learning. It provides a single privacy guarantee to all datapoints in the dataset. We propose output-specific $(\varepsilon,\delta)$-DP to characterize privacy guarantees for individual examples when releasing models trained by DP-SGD. We also design an efficient algorithm to investigate individual privacy across a number of datasets. We find that most examples enjoy stronger privacy guarantees than the worst-case bound. We further discover that the training loss and the privacy parameter of an example are well-correlated. This implies groups that are underserved in terms of model utility simultaneously experience weaker privacy guarantees. For example, on CIFAR-10, the average $\varepsilon$ of the class with the lowest test accuracy is 44.2\% higher than that of the class with the highest accuracy.
Related papers
- Uncertainty quantification by block bootstrap for differentially private stochastic gradient descent [1.0742675209112622]
Gradient Descent (SGD) is a widely used tool in machine learning.
Uncertainty quantification (UQ) for SGD by bootstrap has been addressed by several authors.
We propose a novel block bootstrap for SGD under local differential privacy.
arXiv Detail & Related papers (2024-05-21T07:47:21Z) - A Generalized Shuffle Framework for Privacy Amplification: Strengthening Privacy Guarantees and Enhancing Utility [4.7712438974100255]
We show how to shuffle $(epsilon_i,delta_i)$-PLDP setting with personalized privacy parameters.
We prove that shuffled $(epsilon_i,delta_i)$-PLDP process approximately preserves $mu$-Gaussian Differential Privacy with mu = sqrtfrac2sum_i=1n frac1-delta_i1+eepsilon_i-max_ifrac1-delta_i1+e
arXiv Detail & Related papers (2023-12-22T02:31:46Z) - Analyzing Privacy Leakage in Machine Learning via Multiple Hypothesis
Testing: A Lesson From Fano [83.5933307263932]
We study data reconstruction attacks for discrete data and analyze it under the framework of hypothesis testing.
We show that if the underlying private data takes values from a set of size $M$, then the target privacy parameter $epsilon$ can be $O(log M)$ before the adversary gains significant inferential power.
arXiv Detail & Related papers (2022-10-24T23:50:12Z) - Fine-Tuning with Differential Privacy Necessitates an Additional
Hyperparameter Search [38.83524780461911]
We show how carefully selecting the layers being fine-tuned in the pretrained neural network allows us to establish new state-of-the-art tradeoffs between privacy and accuracy.
We achieve 77.9% accuracy for $(varepsilon, delta)= (2, 10-5)$ on CIFAR-100 for a model pretrained on ImageNet.
arXiv Detail & Related papers (2022-10-05T11:32:49Z) - Smooth Anonymity for Sparse Graphs [69.1048938123063]
differential privacy has emerged as the gold standard of privacy, however, when it comes to sharing sparse datasets.
In this work, we consider a variation of $k$-anonymity, which we call smooth-$k$-anonymity, and design simple large-scale algorithms that efficiently provide smooth-$k$-anonymity.
arXiv Detail & Related papers (2022-07-13T17:09:25Z) - Large Scale Transfer Learning for Differentially Private Image
Classification [51.10365553035979]
Differential Privacy (DP) provides a formal framework for training machine learning models with individual example level privacy.
Private training using DP-SGD protects against leakage by injecting noise into individual example gradients.
While this result is quite appealing, the computational cost of training large-scale models with DP-SGD is substantially higher than non-private training.
arXiv Detail & Related papers (2022-05-06T01:22:20Z) - Quantifying identifiability to choose and audit $\epsilon$ in
differentially private deep learning [15.294433619347082]
To use differential privacy in machine learning, data scientists must choose privacy parameters $(epsilon,delta)$.
We transform $(epsilon,delta)$ to a bound on the Bayesian posterior belief of the adversary assumed by differential privacy concerning the presence of any record in the training dataset.
We formulate an implementation of this differential privacy adversary that allows data scientists to audit model training and compute empirical identifiability scores and empirical $(epsilon,delta)$.
arXiv Detail & Related papers (2021-03-04T09:35:58Z) - Do Not Let Privacy Overbill Utility: Gradient Embedding Perturbation for
Private Learning [74.73901662374921]
A differentially private model degrades the utility drastically when the model comprises a large number of trainable parameters.
We propose an algorithm emphGradient Embedding Perturbation (GEP) towards training differentially private deep models with decent accuracy.
arXiv Detail & Related papers (2021-02-25T04:29:58Z) - Learning with User-Level Privacy [61.62978104304273]
We analyze algorithms to solve a range of learning tasks under user-level differential privacy constraints.
Rather than guaranteeing only the privacy of individual samples, user-level DP protects a user's entire contribution.
We derive an algorithm that privately answers a sequence of $K$ adaptively chosen queries with privacy cost proportional to $tau$, and apply it to solve the learning tasks we consider.
arXiv Detail & Related papers (2021-02-23T18:25:13Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.