Stochastic Variance-Reduced Newton: Accelerating Finite-Sum Minimization with Large Batches
- URL: http://arxiv.org/abs/2206.02702v2
- Date: Tue, 29 Apr 2025 13:47:45 GMT
- Title: Stochastic Variance-Reduced Newton: Accelerating Finite-Sum Minimization with Large Batches
- Authors: Michał Dereziński,
- Abstract summary: We propose a finite-sum minimization algorithm that provably accelerates existing Newton methods.<n>Surprisingly, this acceleration gets more significant the larger the data size.<n>Our algorithm retains the key advantages of Newton-type methods, such as easily parallel large-batch operations and a simple unit step size.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Stochastic variance reduction has proven effective at accelerating first-order algorithms for solving convex finite-sum optimization tasks such as empirical risk minimization. Incorporating second-order information has proven helpful in further improving the performance of these first-order methods. Yet, comparatively little is known about the benefits of using variance reduction to accelerate popular stochastic second-order methods such as Subsampled Newton. To address this, we propose Stochastic Variance-Reduced Newton (SVRN), a finite-sum minimization algorithm that provably accelerates existing stochastic Newton methods from $O(\alpha\log(1/\epsilon))$ to $O\big(\frac{\log(1/\epsilon)}{\log(n)}\big)$ passes over the data, i.e., by a factor of $O(\alpha\log(n))$, where $n$ is the number of sum components and $\alpha$ is the approximation factor in the Hessian estimate. Surprisingly, this acceleration gets more significant the larger the data size $n$, which is a unique property of SVRN. Our algorithm retains the key advantages of Newton-type methods, such as easily parallelizable large-batch operations and a simple unit step size. We use SVRN to accelerate Subsampled Newton and Iterative Hessian Sketch algorithms, and show that it compares favorably to popular first-order methods with variance~reduction.
Related papers
- Improving Stochastic Cubic Newton with Momentum [37.1630298053787]
We show that momentum provably stabilizes the variance of estimates.
Using our globalization technique, we prove a convergence point.
We also show convex Newtonized methods with momentum.
arXiv Detail & Related papers (2024-10-25T15:49:16Z) - Alternating Iteratively Reweighted $\ell_1$ and Subspace Newton Algorithms for Nonconvex Sparse Optimization [11.56128809794923]
We present a novel hybrid algorithm for minimizing the sum of a differentiable loss function and a nonsmooth regularization function.
We prove global convergence to a critical point and, under suitable conditions, demonstrate that the algorithm outperforms existing methods.
arXiv Detail & Related papers (2024-07-24T12:15:59Z) - Second-order Information Promotes Mini-Batch Robustness in Variance-Reduced Gradients [0.196629787330046]
We show that incorporating partial second-order information of the objective function can dramatically improve robustness to mini-batch size of variance-reduced gradient methods.
We demonstrate this phenomenon on a prototypical Newton ($textttMb-SVRN$) algorithm.
arXiv Detail & Related papers (2024-04-23T05:45:52Z) - Stochastic Optimization for Non-convex Problem with Inexact Hessian
Matrix, Gradient, and Function [99.31457740916815]
Trust-region (TR) and adaptive regularization using cubics have proven to have some very appealing theoretical properties.
We show that TR and ARC methods can simultaneously provide inexact computations of the Hessian, gradient, and function values.
arXiv Detail & Related papers (2023-10-18T10:29:58Z) - Fast Computation of Optimal Transport via Entropy-Regularized Extragradient Methods [75.34939761152587]
Efficient computation of the optimal transport distance between two distributions serves as an algorithm that empowers various applications.
This paper develops a scalable first-order optimization-based method that computes optimal transport to within $varepsilon$ additive accuracy.
arXiv Detail & Related papers (2023-01-30T15:46:39Z) - Second-order optimization with lazy Hessians [55.51077907483634]
We analyze Newton's lazy Hessian updates for solving general possibly non-linear optimization problems.
We reuse a previously seen Hessian iteration while computing new gradients at each step of the method.
arXiv Detail & Related papers (2022-12-01T18:58:26Z) - Hessian Averaging in Stochastic Newton Methods Achieves Superlinear
Convergence [69.65563161962245]
We consider a smooth and strongly convex objective function using a Newton method.
We show that there exists a universal weighted averaging scheme that transitions to local convergence at an optimal stage.
arXiv Detail & Related papers (2022-04-20T07:14:21Z) - Accelerated SGD for Non-Strongly-Convex Least Squares [14.010916616909743]
We consider approximation for the least squares regression problem in the non-strongly convex setting.
We present the first practical algorithm that achieves the optimal prediction error rates in terms of dependence on the noise of the problem.
arXiv Detail & Related papers (2022-03-03T14:39:33Z) - SCORE: Approximating Curvature Information under Self-Concordant
Regularization [0.0]
We propose a generalized Gauss-Newton with Self-Concordant Regularization (GGN-SCORE) algorithm that updates the minimization speed each time it receives a new input.
The proposed algorithm exploits the structure of the second-order information in the Hessian matrix, thereby reducing computational overhead.
arXiv Detail & Related papers (2021-12-14T13:03:04Z) - Nys-Curve: Nystr\"om-Approximated Curvature for Stochastic Optimization [20.189732632410024]
The quasi-Newton method provides curvature information by approximating the Hessian using the secant equation.
We propose an approximate Newton step-based DP optimization algorithm for large-scale empirical risk of convex functions with linear convergence rates.
arXiv Detail & Related papers (2021-10-16T14:04:51Z) - Newton-LESS: Sparsification without Trade-offs for the Sketched Newton
Update [88.73437209862891]
In second-order optimization, a potential bottleneck can be computing the Hessian matrix of the optimized function at every iteration.
We show that the Gaussian sketching matrix can be drastically sparsified, significantly reducing the computational cost of sketching.
We prove that Newton-LESS enjoys nearly the same problem-independent local convergence rate as Gaussian embeddings.
arXiv Detail & Related papers (2021-07-15T17:33:05Z) - Correcting Momentum with Second-order Information [50.992629498861724]
We develop a new algorithm for non-critical optimization that finds an $O(epsilon)$epsilon point in the optimal product.
We validate our results on a variety of large-scale deep learning benchmarks and architectures.
arXiv Detail & Related papers (2021-03-04T19:01:20Z) - Single-Timescale Stochastic Nonconvex-Concave Optimization for Smooth
Nonlinear TD Learning [145.54544979467872]
We propose two single-timescale single-loop algorithms that require only one data point each step.
Our results are expressed in a form of simultaneous primal and dual side convergence.
arXiv Detail & Related papers (2020-08-23T20:36:49Z) - Gradient Free Minimax Optimization: Variance Reduction and Faster
Convergence [120.9336529957224]
In this paper, we denote the non-strongly setting on the magnitude of a gradient-free minimax optimization problem.
We show that a novel zeroth-order variance reduced descent algorithm achieves the best known query complexity.
arXiv Detail & Related papers (2020-06-16T17:55:46Z) - Stochastic Subspace Cubic Newton Method [14.624340432672172]
We propose a new randomized second-order optimization algorithm for minimizing a high dimensional convex function $f$.
We prove that as we vary the minibatch size, the global convergence rate of SSCN interpolates between the rate of coordinate descent (CD) and the rate of cubic regularized Newton.
Remarkably, the local convergence rate of SSCN matches the rate of subspace descent applied to the problem of minimizing the quadratic function $frac12 (x-x*)top nabla2f(x*)(x-x*)$, where $x
arXiv Detail & Related papers (2020-02-21T19:42:18Z) - SPAN: A Stochastic Projected Approximate Newton Method [17.94221425332409]
We propose SPAN, a novel approximate and fast Newton method to compute the inverse of the Hessian matrix.
SPAN outperforms existing first-order and second-order optimization methods in terms of the convergence wall-clock time.
arXiv Detail & Related papers (2020-02-10T12:42:42Z) - Variance Reduction with Sparse Gradients [82.41780420431205]
Variance reduction methods such as SVRG and SpiderBoost use a mixture of large and small batch gradients.
We introduce a new sparsity operator: The random-top-k operator.
Our algorithm consistently outperforms SpiderBoost on various tasks including image classification, natural language processing, and sparse matrix factorization.
arXiv Detail & Related papers (2020-01-27T08:23:58Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.