Fairness and Unfairness in Binary and Multiclass Classification: Quantifying, Calculating, and Bounding
- URL: http://arxiv.org/abs/2206.03234v2
- Date: Fri, 5 Apr 2024 18:00:01 GMT
- Title: Fairness and Unfairness in Binary and Multiclass Classification: Quantifying, Calculating, and Bounding
- Authors: Sivan Sabato, Eran Treister, Elad Yom-Tov,
- Abstract summary: We propose a new interpretable measure of unfairness, that allows providing a quantitative analysis of classifier fairness.
We show how this measure can be calculated when the classifier's conditional confusion matrices are known.
We report experiments on data sets representing diverse applications.
- Score: 22.449347663780767
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We propose a new interpretable measure of unfairness, that allows providing a quantitative analysis of classifier fairness, beyond a dichotomous fair/unfair distinction. We show how this measure can be calculated when the classifier's conditional confusion matrices are known. We further propose methods for auditing classifiers for their fairness when the confusion matrices cannot be obtained or even estimated. Our approach lower-bounds the unfairness of a classifier based only on aggregate statistics, which may be provided by the owner of the classifier or collected from freely available data. We use the equalized odds criterion, which we generalize to the multiclass case. We report experiments on data sets representing diverse applications, which demonstrate the effectiveness and the wide range of possible uses of the proposed methodology. An implementation of the procedures proposed in this paper and as the code for running the experiments are provided in https://github.com/sivansabato/unfairness.
Related papers
- A Hard-to-Beat Baseline for Training-free CLIP-based Adaptation [121.0693322732454]
Contrastive Language-Image Pretraining (CLIP) has gained popularity for its remarkable zero-shot capacity.
Recent research has focused on developing efficient fine-tuning methods to enhance CLIP's performance in downstream tasks.
We revisit a classical algorithm, Gaussian Discriminant Analysis (GDA), and apply it to the downstream classification of CLIP.
arXiv Detail & Related papers (2024-02-06T15:45:27Z) - Correcting Underrepresentation and Intersectional Bias for Classification [49.1574468325115]
We consider the problem of learning from data corrupted by underrepresentation bias.
We show that with a small amount of unbiased data, we can efficiently estimate the group-wise drop-out rates.
We show that our algorithm permits efficient learning for model classes of finite VC dimension.
arXiv Detail & Related papers (2023-06-19T18:25:44Z) - Multi-Classification using One-versus-One Deep Learning Strategy with
Joint Probability Estimates [0.0]
The proposed model achieves generally higher classification accuracy than other state-of-the-art models.
Numerical experiments in different applications show that the proposed model achieves generally higher classification accuracy than other state-of-the-art models.
arXiv Detail & Related papers (2023-06-16T07:54:15Z) - Class-Conditional Conformal Prediction with Many Classes [60.8189977620604]
We propose a method called clustered conformal prediction that clusters together classes having "similar" conformal scores.
We find that clustered conformal typically outperforms existing methods in terms of class-conditional coverage and set size metrics.
arXiv Detail & Related papers (2023-06-15T17:59:02Z) - Arbitrariness and Social Prediction: The Confounding Role of Variance in
Fair Classification [31.392067805022414]
Variance in predictions across different trained models is a significant, under-explored source of error in fair binary classification.
In practice, the variance on some data examples is so large that decisions can be effectively arbitrary.
We develop an ensembling algorithm that abstains from classification when a prediction would be arbitrary.
arXiv Detail & Related papers (2023-01-27T06:52:04Z) - Anomaly Detection using Ensemble Classification and Evidence Theory [62.997667081978825]
We present a novel approach for novel detection using ensemble classification and evidence theory.
A pool selection strategy is presented to build a solid ensemble classifier.
We use uncertainty for the anomaly detection approach.
arXiv Detail & Related papers (2022-12-23T00:50:41Z) - Realistic Evaluation of Transductive Few-Shot Learning [41.06192162435249]
Transductive inference is widely used in few-shot learning.
We study the effect of arbitrary class distributions within the query sets of few-shot tasks at inference.
We evaluate experimentally state-of-the-art transductive methods over 3 widely used data sets.
arXiv Detail & Related papers (2022-04-24T03:35:06Z) - Fair Group-Shared Representations with Normalizing Flows [68.29997072804537]
We develop a fair representation learning algorithm which is able to map individuals belonging to different groups in a single group.
We show experimentally that our methodology is competitive with other fair representation learning algorithms.
arXiv Detail & Related papers (2022-01-17T10:49:49Z) - Shift Happens: Adjusting Classifiers [2.8682942808330703]
Minimizing expected loss measured by a proper scoring rule, such as Brier score or log-loss (cross-entropy), is a common objective while training a probabilistic classifier.
We propose methods that transform all predictions to (re)equalize the average prediction and the class distribution.
We demonstrate experimentally that, when in practice the class distribution is known only approximately, there is often still a reduction in loss depending on the amount of shift and the precision to which the class distribution is known.
arXiv Detail & Related papers (2021-11-03T21:27:27Z) - When in Doubt: Improving Classification Performance with Alternating
Normalization [57.39356691967766]
We introduce Classification with Alternating Normalization (CAN), a non-parametric post-processing step for classification.
CAN improves classification accuracy for challenging examples by re-adjusting their predicted class probability distribution.
We empirically demonstrate its effectiveness across a diverse set of classification tasks.
arXiv Detail & Related papers (2021-09-28T02:55:42Z) - Does Adversarial Oversampling Help us? [10.210871872870737]
We propose a three-player adversarial game-based end-to-end method to handle class imbalance in datasets.
Rather than adversarial minority oversampling, we propose an adversarial oversampling (AO) and a data-space oversampling (DO) approach.
The effectiveness of our proposed method has been validated with high-dimensional, highly imbalanced and large-scale multi-class datasets.
arXiv Detail & Related papers (2021-08-20T05:43:17Z) - Multi-Class Classification from Single-Class Data with Confidences [90.48669386745361]
We propose an empirical risk minimization framework that is loss-/model-/optimizer-independent.
We show that our method can be Bayes-consistent with a simple modification even if the provided confidences are highly noisy.
arXiv Detail & Related papers (2021-06-16T15:38:13Z) - Binary Classification from Multiple Unlabeled Datasets via Surrogate Set
Classification [94.55805516167369]
We propose a new approach for binary classification from m U-sets for $mge2$.
Our key idea is to consider an auxiliary classification task called surrogate set classification (SSC)
arXiv Detail & Related papers (2021-02-01T07:36:38Z) - A Statistical Test for Probabilistic Fairness [11.95891442664266]
We propose a statistical hypothesis test for detecting unfair classifiers.
We show both theoretically as well as empirically that the proposed test is correct.
In addition, the proposed framework offers interpretability by identifying the most favorable perturbation of the data.
arXiv Detail & Related papers (2020-12-09T00:20:02Z) - Learning and Evaluating Representations for Deep One-class
Classification [59.095144932794646]
We present a two-stage framework for deep one-class classification.
We first learn self-supervised representations from one-class data, and then build one-class classifiers on learned representations.
In experiments, we demonstrate state-of-the-art performance on visual domain one-class classification benchmarks.
arXiv Detail & Related papers (2020-11-04T23:33:41Z) - Predicting Classification Accuracy When Adding New Unobserved Classes [8.325327265120283]
We study how a classifier's performance can be used to extrapolate its expected accuracy on a larger, unobserved set of classes.
We formulate a robust neural-network-based algorithm, "CleaneX", which learns to estimate the accuracy of such classifiers on arbitrarily large sets of classes.
arXiv Detail & Related papers (2020-10-28T14:37:25Z) - Fairness with Overlapping Groups [15.154984899546333]
A standard goal is to ensure the equality of fairness metrics across multiple overlapping groups simultaneously.
We reconsider this standard fair classification problem using a probabilistic population analysis.
Our approach unifies a variety of existing group-fair classification methods and enables extensions to a wide range of non-decomposable multiclass performance metrics and fairness measures.
arXiv Detail & Related papers (2020-06-24T05:01:10Z) - Classifier uncertainty: evidence, potential impact, and probabilistic
treatment [0.0]
We present an approach to quantify the uncertainty of classification performance metrics based on a probability model of the confusion matrix.
We show that uncertainties can be surprisingly large and limit performance evaluation.
arXiv Detail & Related papers (2020-06-19T12:49:19Z) - Towards Model-Agnostic Post-Hoc Adjustment for Balancing Ranking
Fairness and Algorithm Utility [54.179859639868646]
Bipartite ranking aims to learn a scoring function that ranks positive individuals higher than negative ones from labeled data.
There have been rising concerns on whether the learned scoring function can cause systematic disparity across different protected groups.
We propose a model post-processing framework for balancing them in the bipartite ranking scenario.
arXiv Detail & Related papers (2020-06-15T10:08:39Z) - Quantifying the Uncertainty of Precision Estimates for Rule based Text
Classifiers [0.0]
Rule based classifiers that use the presence and absence of key sub-strings to make classification decisions have a natural mechanism for quantifying the uncertainty of their precision.
For a binary classifier, the key insight is to treat partitions of the sub-string set induced by the documents as Bernoulli random variables.
The utility of this approach is demonstrated with a benchmark problem.
arXiv Detail & Related papers (2020-05-19T03:51:47Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.