Discrete State-Action Abstraction via the Successor Representation
- URL: http://arxiv.org/abs/2206.03467v1
- Date: Tue, 7 Jun 2022 17:37:30 GMT
- Title: Discrete State-Action Abstraction via the Successor Representation
- Authors: Amnon Attali, Pedro Cisneros-Velarde, Marco Morales, Nancy M. Amato
- Abstract summary: Abstraction is one approach that provides the agent with an intrinsic reward for transitioning in a latent space.
Our approach is the first for automatically learning a discrete abstraction of the underlying environment.
Our proposed algorithm, Discrete State-Action Abstraction (DSAA), iteratively swaps between training these options and using them to efficiently explore more of the environment.
- Score: 3.453310639983932
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: When reinforcement learning is applied with sparse rewards, agents must spend
a prohibitively long time exploring the unknown environment without any
learning signal. Abstraction is one approach that provides the agent with an
intrinsic reward for transitioning in a latent space. Prior work focuses on
dense continuous latent spaces, or requires the user to manually provide the
representation. Our approach is the first for automatically learning a discrete
abstraction of the underlying environment. Moreover, our method works on
arbitrary input spaces, using an end-to-end trainable regularized successor
representation model. For transitions between abstract states, we train a set
of temporally extended actions in the form of options, i.e., an action
abstraction. Our proposed algorithm, Discrete State-Action Abstraction (DSAA),
iteratively swaps between training these options and using them to efficiently
explore more of the environment to improve the state abstraction. As a result,
our model is not only useful for transfer learning but also in the online
learning setting. We empirically show that our agent is able to explore the
environment and solve provided tasks more efficiently than baseline
reinforcement learning algorithms. Our code is publicly available at
\url{https://github.com/amnonattali/dsaa}.
Related papers
- PRISE: LLM-Style Sequence Compression for Learning Temporal Action Abstractions in Control [55.81022882408587]
Temporal action abstractions, along with belief state representations, are a powerful knowledge sharing mechanism for sequential decision making.
We propose a novel view that treats inducing temporal action abstractions as a sequence compression problem.
We introduce an approach that combines continuous action quantization with byte pair encoding to learn powerful action abstractions.
arXiv Detail & Related papers (2024-02-16T04:55:09Z) - AI planning in the imagination: High-level planning on learned abstract
search spaces [68.75684174531962]
We propose a new method, called PiZero, that gives an agent the ability to plan in an abstract search space that the agent learns during training.
We evaluate our method on multiple domains, including the traveling salesman problem, Sokoban, 2048, the facility location problem, and Pacman.
arXiv Detail & Related papers (2023-08-16T22:47:16Z) - Learning Abstract and Transferable Representations for Planning [25.63560394067908]
We propose a framework for autonomously learning state abstractions of an agent's environment.
These abstractions are task-independent, and so can be reused to solve new tasks.
We show how to combine these portable representations with problem-specific ones to generate a sound description of a specific task.
arXiv Detail & Related papers (2022-05-04T14:40:04Z) - Temporal Abstractions-Augmented Temporally Contrastive Learning: An
Alternative to the Laplacian in RL [140.12803111221206]
In reinforcement learning, the graph Laplacian has proved to be a valuable tool in the task-agnostic setting.
We propose an alternative method that is able to recover, in a non-uniform-prior setting, the expressiveness and the desired properties of the Laplacian representation.
We find that our method succeeds as an alternative to the Laplacian in the non-uniform setting and scales to challenging continuous control environments.
arXiv Detail & Related papers (2022-03-21T22:07:48Z) - Inventing Relational State and Action Abstractions for Effective and
Efficient Bilevel Planning [26.715198108255162]
We develop a novel framework for learning state and action abstractions.
We learn relational, neuro-symbolic abstractions that generalize over object identities and numbers.
We show that our learned abstractions are able to quickly solve held-out tasks of longer horizons.
arXiv Detail & Related papers (2022-03-17T22:13:09Z) - MDP Abstraction with Successor Features [14.433551477386318]
We study abstraction in the context of reinforcement learning, in which agents may perform state or temporal abstractions.
In this work, we propose successor abstraction, a novel abstraction scheme building on successor features.
Our successor abstraction allows us to learn abstract environment models with semantics that are transferable across different environments.
arXiv Detail & Related papers (2021-10-18T11:35:08Z) - PsiPhi-Learning: Reinforcement Learning with Demonstrations using
Successor Features and Inverse Temporal Difference Learning [102.36450942613091]
We propose an inverse reinforcement learning algorithm, called emphinverse temporal difference learning (ITD)
We show how to seamlessly integrate ITD with learning from online environment interactions, arriving at a novel algorithm for reinforcement learning with demonstrations, called $Psi Phi$-learning.
arXiv Detail & Related papers (2021-02-24T21:12:09Z) - Learning Abstract Models for Strategic Exploration and Fast Reward
Transfer [85.19766065886422]
We learn an accurate Markov Decision Process (MDP) over abstract states to avoid compounding errors.
Our approach achieves strong results on three of the hardest Arcade Learning Environment games.
We can reuse the learned abstract MDP for new reward functions, achieving higher reward in 1000x fewer samples than model-free methods trained from scratch.
arXiv Detail & Related papers (2020-07-12T03:33:50Z) - Environment Shaping in Reinforcement Learning using State Abstraction [63.444831173608605]
We propose a novel framework of emphenvironment shaping using state abstraction.
Our key idea is to compress the environment's large state space with noisy signals to an abstracted space.
We show that the agent's policy learnt in the shaped environment preserves near-optimal behavior in the original environment.
arXiv Detail & Related papers (2020-06-23T17:00:22Z) - Learning Discrete State Abstractions With Deep Variational Inference [7.273663549650618]
We propose a method for learning approximate bisimulations, a type of state abstraction.
We use a deep neural encoder to map states onto continuous embeddings.
We map these embeddings onto a discrete representation using an action-conditioned hidden Markov model.
arXiv Detail & Related papers (2020-03-09T17:58:27Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.