Utilising the CLT Structure in Stochastic Gradient based Sampling :
Improved Analysis and Faster Algorithms
- URL: http://arxiv.org/abs/2206.03792v5
- Date: Sat, 1 Jul 2023 16:47:51 GMT
- Title: Utilising the CLT Structure in Stochastic Gradient based Sampling :
Improved Analysis and Faster Algorithms
- Authors: Aniket Das, Dheeraj Nagaraj and Anant Raj
- Abstract summary: We consider approximations of sampling algorithms, such as Gradient Langevin Dynamics (SGLD) and the Random Batch Method (RBM) for Interacting Particle Dynamcs (IPD)
We observe that the noise introduced by the approximation is nearly Gaussian due to the Central Limit Theorem (CLT) while the driving Brownian motion is exactly Gaussian.
We harness this structure to absorb the approximation error inside the diffusion process, and obtain improved convergence guarantees for these algorithms.
- Score: 14.174806471635403
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We consider stochastic approximations of sampling algorithms, such as
Stochastic Gradient Langevin Dynamics (SGLD) and the Random Batch Method (RBM)
for Interacting Particle Dynamcs (IPD). We observe that the noise introduced by
the stochastic approximation is nearly Gaussian due to the Central Limit
Theorem (CLT) while the driving Brownian motion is exactly Gaussian. We harness
this structure to absorb the stochastic approximation error inside the
diffusion process, and obtain improved convergence guarantees for these
algorithms. For SGLD, we prove the first stable convergence rate in KL
divergence without requiring uniform warm start, assuming the target density
satisfies a Log-Sobolev Inequality. Our result implies superior first-order
oracle complexity compared to prior works, under significantly milder
assumptions. We also prove the first guarantees for SGLD under even weaker
conditions such as H\"{o}lder smoothness and Poincare Inequality, thus bridging
the gap between the state-of-the-art guarantees for LMC and SGLD. Our analysis
motivates a new algorithm called covariance correction, which corrects for the
additional noise introduced by the stochastic approximation by rescaling the
strength of the diffusion. Finally, we apply our techniques to analyze RBM, and
significantly improve upon the guarantees in prior works (such as removing
exponential dependence on horizon), under minimal assumptions.
Related papers
- FastPart: Over-Parameterized Stochastic Gradient Descent for Sparse
optimisation on Measures [1.9950682531209156]
This paper presents a novel algorithm that leverages Gradient Descent strategies in conjunction with Random Features to augment the scalability of Conic Particle Gradient Descent (CPGD)
We provide rigorous proofs demonstrating the following key findings: (i) The total variation norms of the solution measures along the descent trajectory remain bounded, ensuring stability and preventing undesirable divergence; (ii) We establish a global convergence guarantee with a convergence rate of $mathcalO(log(K)/sqrtK)$ over $K$, showcasing the efficiency and effectiveness of our algorithm; (iii) Additionally, we analyze and establish
arXiv Detail & Related papers (2023-12-10T20:41:43Z) - Robust Stochastic Optimization via Gradient Quantile Clipping [6.2844649973308835]
We introduce a quant clipping strategy for Gradient Descent (SGD)
We use gradient new outliers as norm clipping chains.
We propose an implementation of the algorithm using Huberiles.
arXiv Detail & Related papers (2023-09-29T15:24:48Z) - Computing the Variance of Shuffling Stochastic Gradient Algorithms via
Power Spectral Density Analysis [6.497816402045099]
Two common alternatives to gradient descent (SGD) with theoretical benefits are random reshuffling (SGDRR) and shuffle-once (SGD-SO)
We study the stationary variances of SGD, SGDRR and SGD-SO, whose leading terms decrease in this order, and obtain simple approximations.
arXiv Detail & Related papers (2022-06-01T17:08:04Z) - Minibatch vs Local SGD with Shuffling: Tight Convergence Bounds and
Beyond [63.59034509960994]
We study shuffling-based variants: minibatch and local Random Reshuffling, which draw gradients without replacement.
For smooth functions satisfying the Polyak-Lojasiewicz condition, we obtain convergence bounds which show that these shuffling-based variants converge faster than their with-replacement counterparts.
We propose an algorithmic modification called synchronized shuffling that leads to convergence rates faster than our lower bounds in near-homogeneous settings.
arXiv Detail & Related papers (2021-10-20T02:25:25Z) - Differentiable Annealed Importance Sampling and the Perils of Gradient
Noise [68.44523807580438]
Annealed importance sampling (AIS) and related algorithms are highly effective tools for marginal likelihood estimation.
Differentiability is a desirable property as it would admit the possibility of optimizing marginal likelihood as an objective.
We propose a differentiable algorithm by abandoning Metropolis-Hastings steps, which further unlocks mini-batch computation.
arXiv Detail & Related papers (2021-07-21T17:10:14Z) - Stochastic Gradient Descent-Ascent and Consensus Optimization for Smooth
Games: Convergence Analysis under Expected Co-coercivity [49.66890309455787]
We introduce the expected co-coercivity condition, explain its benefits, and provide the first last-iterate convergence guarantees of SGDA and SCO.
We prove linear convergence of both methods to a neighborhood of the solution when they use constant step-size.
Our convergence guarantees hold under the arbitrary sampling paradigm, and we give insights into the complexity of minibatching.
arXiv Detail & Related papers (2021-06-30T18:32:46Z) - On the Convergence of Stochastic Extragradient for Bilinear Games with
Restarted Iteration Averaging [96.13485146617322]
We present an analysis of the ExtraGradient (SEG) method with constant step size, and present variations of the method that yield favorable convergence.
We prove that when augmented with averaging, SEG provably converges to the Nash equilibrium, and such a rate is provably accelerated by incorporating a scheduled restarting procedure.
arXiv Detail & Related papers (2021-06-30T17:51:36Z) - High Probability Complexity Bounds for Non-Smooth Stochastic Optimization with Heavy-Tailed Noise [51.31435087414348]
It is essential to theoretically guarantee that algorithms provide small objective residual with high probability.
Existing methods for non-smooth convex optimization have complexity bounds with dependence on confidence level.
We propose novel stepsize rules for two methods with gradient clipping.
arXiv Detail & Related papers (2021-06-10T17:54:21Z) - Stochastic Optimization with Heavy-Tailed Noise via Accelerated Gradient
Clipping [69.9674326582747]
We propose a new accelerated first-order method called clipped-SSTM for smooth convex optimization with heavy-tailed distributed noise in gradients.
We prove new complexity that outperform state-of-the-art results in this case.
We derive the first non-trivial high-probability complexity bounds for SGD with clipping without light-tails assumption on the noise.
arXiv Detail & Related papers (2020-05-21T17:05:27Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.