Outsider Oversight: Designing a Third Party Audit Ecosystem for AI
Governance
- URL: http://arxiv.org/abs/2206.04737v1
- Date: Thu, 9 Jun 2022 19:18:47 GMT
- Title: Outsider Oversight: Designing a Third Party Audit Ecosystem for AI
Governance
- Authors: Inioluwa Deborah Raji, Peggy Xu, Colleen Honigsberg, Daniel E. Ho
- Abstract summary: We discuss the challenges of third party oversight in the current AI landscape.
We show that the institutional design of such audits are far from monolithic.
We conclude that the turn toward audits alone is unlikely to achieve actual algorithmic accountability.
- Score: 3.8997087223115634
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Much attention has focused on algorithmic audits and impact assessments to
hold developers and users of algorithmic systems accountable. But existing
algorithmic accountability policy approaches have neglected the lessons from
non-algorithmic domains: notably, the importance of interventions that allow
for the effective participation of third parties. Our paper synthesizes lessons
from other fields on how to craft effective systems of external oversight for
algorithmic deployments. First, we discuss the challenges of third party
oversight in the current AI landscape. Second, we survey audit systems across
domains - e.g., financial, environmental, and health regulation - and show that
the institutional design of such audits are far from monolithic. Finally, we
survey the evidence base around these design components and spell out the
implications for algorithmic auditing. We conclude that the turn toward audits
alone is unlikely to achieve actual algorithmic accountability, and sustained
focus on institutional design will be required for meaningful third party
involvement.
Related papers
- Open Problems in Technical AI Governance [93.89102632003996]
Technical AI governance refers to technical analysis and tools for supporting the effective governance of AI.
This paper is intended as a resource for technical researchers or research funders looking to contribute to AI governance.
arXiv Detail & Related papers (2024-07-20T21:13:56Z) - Auditing of AI: Legal, Ethical and Technical Approaches [0.0]
AI auditing is a rapidly growing field of research and practice.
Different approaches to AI auditing have different affordances and constraints.
The next step in the evolution of auditing as an AI governance mechanism should be the interlinking of these available approaches.
arXiv Detail & Related papers (2024-07-07T12:49:58Z) - A Blueprint for Auditing Generative AI [0.9999629695552196]
generative AI systems display emergent capabilities and are adaptable to a wide range of downstream tasks.
Existing auditing procedures fail to address the governance challenges posed by generative AI systems.
We propose a three-layered approach, whereby governance audits of technology providers that design and disseminate generative AI systems, model audits of generative AI systems after pre-training but prior to their release, and application audits of applications based on top of generative AI systems.
arXiv Detail & Related papers (2024-07-07T11:56:54Z) - Law and the Emerging Political Economy of Algorithmic Audits [1.3654846342364302]
Digital Services Act (DSA) and Online Safety Act (OSA) have established the framework within which technology corporations and (traditional) auditors will develop the practice' of algorithmic auditing.
This paper systematically reviews the auditing provisions in the DSA and the OSA in light of observations from the emerging industry of algorithmic auditing.
We warn that ambitious research ideas and technical projects of/for algorithmic auditing may end up crashed by the standardising grip of traditional auditors.
arXiv Detail & Related papers (2024-04-03T19:45:30Z) - Computing Power and the Governance of Artificial Intelligence [51.967584623262674]
Governments and companies have started to leverage compute as a means to govern AI.
compute-based policies and technologies have the potential to assist in these areas, but there is significant variation in their readiness for implementation.
naive or poorly scoped approaches to compute governance carry significant risks in areas like privacy, economic impacts, and centralization of power.
arXiv Detail & Related papers (2024-02-13T21:10:21Z) - Who Audits the Auditors? Recommendations from a field scan of the
algorithmic auditing ecosystem [0.971392598996499]
We provide the first comprehensive field scan of the AI audit ecosystem.
We identify emerging best practices as well as methods and tools that are becoming commonplace.
We outline policy recommendations to improve the quality and impact of these audits.
arXiv Detail & Related papers (2023-10-04T01:40:03Z) - The right to audit and power asymmetries in algorithm auditing [68.8204255655161]
We elaborate on the challenges and asymmetries mentioned by Sandvig at the IC2S2 2021.
We also contribute a discussion of the asymmetries that were not covered by Sandvig.
We discuss the implications these asymmetries have for algorithm auditing research.
arXiv Detail & Related papers (2023-02-16T13:57:41Z) - Algorithmic Fairness and Vertical Equity: Income Fairness with IRS Tax
Audit Models [73.24381010980606]
This study examines issues of algorithmic fairness in the context of systems that inform tax audit selection by the IRS.
We show how the use of more flexible machine learning methods for selecting audits may affect vertical equity.
Our results have implications for the design of algorithmic tools across the public sector.
arXiv Detail & Related papers (2022-06-20T16:27:06Z) - Towards a multi-stakeholder value-based assessment framework for
algorithmic systems [76.79703106646967]
We develop a value-based assessment framework that visualizes closeness and tensions between values.
We give guidelines on how to operationalize them, while opening up the evaluation and deliberation process to a wide range of stakeholders.
arXiv Detail & Related papers (2022-05-09T19:28:32Z) - Inverse Online Learning: Understanding Non-Stationary and Reactionary
Policies [79.60322329952453]
We show how to develop interpretable representations of how agents make decisions.
By understanding the decision-making processes underlying a set of observed trajectories, we cast the policy inference problem as the inverse to this online learning problem.
We introduce a practical algorithm for retrospectively estimating such perceived effects, alongside the process through which agents update them.
Through application to the analysis of UNOS organ donation acceptance decisions, we demonstrate that our approach can bring valuable insights into the factors that govern decision processes and how they change over time.
arXiv Detail & Related papers (2022-03-14T17:40:42Z) - Closing the AI Accountability Gap: Defining an End-to-End Framework for
Internal Algorithmic Auditing [8.155332346712424]
We introduce a framework for algorithmic auditing that supports artificial intelligence system development end-to-end.
The proposed auditing framework is intended to close the accountability gap in the development and deployment of large-scale artificial intelligence systems.
arXiv Detail & Related papers (2020-01-03T20:19:04Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.