XAudit : A Theoretical Look at Auditing with Explanations
- URL: http://arxiv.org/abs/2206.04740v3
- Date: Mon, 5 Jun 2023 15:38:01 GMT
- Title: XAudit : A Theoretical Look at Auditing with Explanations
- Authors: Chhavi Yadav, Michal Moshkovitz, Kamalika Chaudhuri
- Abstract summary: This work formalizes the role of explanations in auditing and investigates if and how model explanations can help audits.
Specifically, we propose explanation-based algorithms for auditing linear classifiers and decision trees for feature sensitivity.
Our results illustrate that Counterfactual explanations are extremely helpful for auditing.
- Score: 29.55309950026882
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Responsible use of machine learning requires models to be audited for
undesirable properties. While a body of work has proposed using explanations
for auditing, how to do so and why has remained relatively ill-understood. This
work formalizes the role of explanations in auditing and investigates if and
how model explanations can help audits. Specifically, we propose
explanation-based algorithms for auditing linear classifiers and decision trees
for feature sensitivity. Our results illustrate that Counterfactual
explanations are extremely helpful for auditing. While Anchors and decision
paths may not be as beneficial in the worst-case, in the average-case they do
aid a lot.
Related papers
- Make LLMs better zero-shot reasoners: Structure-orientated autonomous reasoning [52.83539473110143]
We introduce a novel structure-oriented analysis method to help Large Language Models (LLMs) better understand a question.
To further improve the reliability in complex question-answering tasks, we propose a multi-agent reasoning system, Structure-oriented Autonomous Reasoning Agents (SARA)
Extensive experiments verify the effectiveness of the proposed reasoning system. Surprisingly, in some cases, the system even surpasses few-shot methods.
arXiv Detail & Related papers (2024-10-18T05:30:33Z) - Demystifying Reinforcement Learning in Production Scheduling via Explainable AI [0.7515066610159392]
Deep Reinforcement Learning (DRL) is a frequently employed technique to solve scheduling problems.
Although DRL agents ace at delivering viable results in short computing times, their reasoning remains opaque.
We apply two explainable AI (xAI) frameworks to describe the reasoning behind scheduling decisions of a specialized DRL agent in a flow production.
arXiv Detail & Related papers (2024-08-19T09:39:01Z) - Auditing Local Explanations is Hard [14.172657936593582]
We investigate an auditing framework in which a third-party auditor or a collective of users attempts to sanity-check explanations.
We prove upper and lower bounds on the amount of queries that are needed for an auditor to succeed within this framework.
Our results suggest that for complex high-dimensional settings, merely providing a pointwise prediction and explanation could be insufficient.
arXiv Detail & Related papers (2024-07-18T08:34:05Z) - Towards a Framework for Evaluating Explanations in Automated Fact Verification [12.904145308839997]
As deep neural models in NLP become more complex, the necessity to interpret them becomes greater.
A burgeoning interest has emerged in rationalizing explanations to provide short and coherent justifications for predictions.
We advocate for a formal framework for key concepts and properties about rationalizing explanations to support their evaluation systematically.
arXiv Detail & Related papers (2024-03-29T17:50:28Z) - Evaluating the Utility of Model Explanations for Model Development [54.23538543168767]
We evaluate whether explanations can improve human decision-making in practical scenarios of machine learning model development.
To our surprise, we did not find evidence of significant improvement on tasks when users were provided with any of the saliency maps.
These findings suggest caution regarding the usefulness and potential for misunderstanding in saliency-based explanations.
arXiv Detail & Related papers (2023-12-10T23:13:23Z) - Explainable Data-Driven Optimization: From Context to Decision and Back
Again [76.84947521482631]
Data-driven optimization uses contextual information and machine learning algorithms to find solutions to decision problems with uncertain parameters.
We introduce a counterfactual explanation methodology tailored to explain solutions to data-driven problems.
We demonstrate our approach by explaining key problems in operations management such as inventory management and routing.
arXiv Detail & Related papers (2023-01-24T15:25:16Z) - Complementary Explanations for Effective In-Context Learning [77.83124315634386]
Large language models (LLMs) have exhibited remarkable capabilities in learning from explanations in prompts.
This work aims to better understand the mechanisms by which explanations are used for in-context learning.
arXiv Detail & Related papers (2022-11-25T04:40:47Z) - RESHAPE: Explaining Accounting Anomalies in Financial Statement Audits
by enhancing SHapley Additive exPlanations [1.3333957453318743]
We propose (RESHAPE) which explains the model output on an aggregated attribute-level.
Our results show empirical evidence that RESHAPE results in versatile explanations compared to state-of-the-art baselines.
We envision such attribute-level explanations as a necessary next step in the adoption of unsupervised DL techniques in financial auditing.
arXiv Detail & Related papers (2022-09-19T16:23:43Z) - The Unreliability of Explanations in Few-Shot In-Context Learning [50.77996380021221]
We focus on two NLP tasks that involve reasoning over text, namely question answering and natural language inference.
We show that explanations judged as good by humans--those that are logically consistent with the input--usually indicate more accurate predictions.
We present a framework for calibrating model predictions based on the reliability of the explanations.
arXiv Detail & Related papers (2022-05-06T17:57:58Z) - Human Evaluation of Spoken vs. Visual Explanations for Open-Domain QA [22.76153284711981]
We study whether explanations help users correctly decide when to accept or reject an ODQA system's answer.
Our results show that explanations derived from retrieved evidence passages can outperform strong baselines (calibrated confidence) across modalities.
We show common failure cases of current explanations, emphasize end-to-end evaluation of explanations, and caution against evaluating them in proxy modalities that are different from deployment.
arXiv Detail & Related papers (2020-12-30T08:19:02Z) - Evaluations and Methods for Explanation through Robustness Analysis [117.7235152610957]
We establish a novel set of evaluation criteria for such feature based explanations by analysis.
We obtain new explanations that are loosely necessary and sufficient for a prediction.
We extend the explanation to extract the set of features that would move the current prediction to a target class.
arXiv Detail & Related papers (2020-05-31T05:52:05Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.