A No-reference Quality Assessment Metric for Point Cloud Based on
Captured Video Sequences
- URL: http://arxiv.org/abs/2206.05054v1
- Date: Thu, 9 Jun 2022 06:42:41 GMT
- Title: A No-reference Quality Assessment Metric for Point Cloud Based on
Captured Video Sequences
- Authors: Yu Fan, Zicheng Zhang, Wei Sun, Xiongkuo Min, Wei Lu, Tao Wang, Ning
Liu, Guangtao Zhai
- Abstract summary: We propose a no-reference quality assessment metric for colored point cloud based on captured video sequences.
The experimental results show that our method outperforms most of the state-of-the-art full-reference and no-reference PCQA metrics.
- Score: 40.46566408312466
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Point cloud is one of the most widely used digital formats of 3D models, the
visual quality of which is quite sensitive to distortions such as downsampling,
noise, and compression. To tackle the challenge of point cloud quality
assessment (PCQA) in scenarios where reference is not available, we propose a
no-reference quality assessment metric for colored point cloud based on
captured video sequences. Specifically, three video sequences are obtained by
rotating the camera around the point cloud through three specific orbits. The
video sequences not only contain the static views but also include the
multi-frame temporal information, which greatly helps understand the human
perception of the point clouds. Then we modify the ResNet3D as the feature
extraction model to learn the correlation between the capture videos and
corresponding subjective quality scores. The experimental results show that our
method outperforms most of the state-of-the-art full-reference and no-reference
PCQA metrics, which validates the effectiveness of the proposed method.
Related papers
- PAME: Self-Supervised Masked Autoencoder for No-Reference Point Cloud Quality Assessment [34.256276774430575]
No-reference point cloud quality assessment (NR-PCQA) aims to automatically predict the perceptual quality of point clouds without reference.
We propose a self-supervised pre-training framework using masked autoencoders (PAME) to help the model learn useful representations without labels.
Our method outperforms the state-of-the-art NR-PCQA methods on popular benchmarks in terms of prediction accuracy and generalizability.
arXiv Detail & Related papers (2024-03-15T07:01:33Z) - Activating Frequency and ViT for 3D Point Cloud Quality Assessment
without Reference [0.49157446832511503]
We propose no-reference quality metric of a given 3D-PC.
To map the input attributes to quality score, we use a light-weight hybrid deep model; combined of Deformable Convolutional Network (DCN) and Vision Transformers (ViT)
The results show that our approach outperforms state-of-the-art NR-PCQA measures and even some FR-PCQA on PointXR.
arXiv Detail & Related papers (2023-12-10T19:13:34Z) - Zero-Shot Point Cloud Registration [94.39796531154303]
ZeroReg is the first zero-shot point cloud registration approach that eliminates the need for training on point cloud datasets.
The cornerstone of ZeroReg is the novel transfer of image features from keypoints to the point cloud, enriched by aggregating information from 3D geometric neighborhoods.
On benchmarks such as 3DMatch, 3DLoMatch, and ScanNet, ZeroReg achieves impressive Recall Ratios (RR) of over 84%, 46%, and 75%, respectively.
arXiv Detail & Related papers (2023-12-05T11:33:16Z) - Simple Baselines for Projection-based Full-reference and No-reference
Point Cloud Quality Assessment [60.2709006613171]
We propose simple baselines for projection-based point cloud quality assessment (PCQA)
We use multi-projections obtained via a common cube-like projection process from the point clouds for both full-reference (FR) and no-reference (NR) PCQA tasks.
Taking part in the ICIP 2023 PCVQA Challenge, we succeeded in achieving the top spot in four out of the five competition tracks.
arXiv Detail & Related papers (2023-10-26T04:42:57Z) - Masked Spatio-Temporal Structure Prediction for Self-supervised Learning
on Point Cloud Videos [75.9251839023226]
We propose a Masked-temporal Structure Prediction (MaST-Pre) method to capture the structure of point cloud videos without human annotations.
MaST-Pre consists of two self-supervised learning tasks. First, by reconstructing masked point tubes, our method is able to capture appearance information of point cloud videos.
Second, to learn motion, we propose a temporal cardinality difference prediction task that estimates the change in the number of points within a point tube.
arXiv Detail & Related papers (2023-08-18T02:12:54Z) - MM-PCQA: Multi-Modal Learning for No-reference Point Cloud Quality
Assessment [32.495387943305204]
We propose a novel no-reference point cloud quality assessment (NR-PCQA) metric in a multi-modal fashion.
In specific, we split the point clouds into sub-models to represent local geometry distortions such as point shift and down-sampling.
To achieve the goals, the sub-models and projected images are encoded with point-based and image-based neural networks.
arXiv Detail & Related papers (2022-09-01T06:11:12Z) - Evaluating Point Cloud from Moving Camera Videos: A No-Reference Metric [58.309735075960745]
This paper explores the way of dealing with point cloud quality assessment (PCQA) tasks via video quality assessment (VQA) methods.
We generate the captured videos by rotating the camera around the point clouds through several circular pathways.
We extract both spatial and temporal quality-aware features from the selected key frames and the video clips through using trainable 2D-CNN and pre-trained 3D-CNN models.
arXiv Detail & Related papers (2022-08-30T08:59:41Z) - Reduced Reference Perceptual Quality Model and Application to Rate
Control for 3D Point Cloud Compression [61.110938359555895]
In rate-distortion optimization, the encoder settings are determined by maximizing a reconstruction quality measure subject to a constraint on the bit rate.
We propose a linear perceptual quality model whose variables are the V-PCC geometry and color quantization parameters.
Subjective quality tests with 400 compressed 3D point clouds show that the proposed model correlates well with the mean opinion score.
We show that for the same target bit rate, ratedistortion optimization based on the proposed model offers higher perceptual quality than rate-distortion optimization based on exhaustive search with a point-to-point objective quality metric.
arXiv Detail & Related papers (2020-11-25T12:42:02Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.