Why is constrained neural language generation particularly challenging?
- URL: http://arxiv.org/abs/2206.05395v1
- Date: Sat, 11 Jun 2022 02:07:33 GMT
- Title: Why is constrained neural language generation particularly challenging?
- Authors: Cristina Garbacea, Qiaozhu Mei
- Abstract summary: We present an extensive survey on the emerging topic of constrained neural language generation.
We distinguish between conditions and constraints, present constrained text generation tasks, and review existing methods and evaluation metrics for constrained text generation.
Our aim is to highlight recent progress and trends in this emerging field, informing on the most promising directions and limitations towards advancing the state-of-the-art of constrained neural language generation research.
- Score: 13.62873478165553
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Recent advances in deep neural language models combined with the capacity of
large scale datasets have accelerated the development of natural language
generation systems that produce fluent and coherent texts (to various degrees
of success) in a multitude of tasks and application contexts. However,
controlling the output of these models for desired user and task needs is still
an open challenge. This is crucial not only to customizing the content and
style of the generated language, but also to their safe and reliable deployment
in the real world. We present an extensive survey on the emerging topic of
constrained neural language generation in which we formally define and
categorize the problems of natural language generation by distinguishing
between conditions and constraints (the latter being testable conditions on the
output text instead of the input), present constrained text generation tasks,
and review existing methods and evaluation metrics for constrained text
generation. Our aim is to highlight recent progress and trends in this emerging
field, informing on the most promising directions and limitations towards
advancing the state-of-the-art of constrained neural language generation
research.
Related papers
- Unlocking Anticipatory Text Generation: A Constrained Approach for Large Language Models Decoding [75.06872859716049]
Large Language Models (LLMs) have demonstrated a powerful ability for text generation.
undesired behaviors such as toxicity or hallucinations can manifest.
We propose formalizing text generation as a future-constrained generation problem.
arXiv Detail & Related papers (2023-12-11T06:35:33Z) - Evaluating, Understanding, and Improving Constrained Text Generation for Large Language Models [49.74036826946397]
This study investigates constrained text generation for large language models (LLMs)
Our research mainly focuses on mainstream open-source LLMs, categorizing constraints into lexical, structural, and relation-based types.
Results illuminate LLMs' capacity and deficiency to incorporate constraints and provide insights for future developments in constrained text generation.
arXiv Detail & Related papers (2023-10-25T03:58:49Z) - Controlled Text Generation with Natural Language Instructions [74.88938055638636]
InstructCTG is a controlled text generation framework that incorporates different constraints.
We first extract the underlying constraints of natural texts through a combination of off-the-shelf NLP tools and simple verbalizes.
By prepending natural language descriptions of the constraints and a few demonstrations, we fine-tune a pre-trained language model to incorporate various types of constraints.
arXiv Detail & Related papers (2023-04-27T15:56:34Z) - Controllable Text Generation for Open-Domain Creativity and Fairness [36.744208990024575]
I introduce our recent works on controllable text generation to enhance the creativity and fairness of language generation models.
We explore hierarchical generation and constrained decoding, with applications to creative language generation including story, poetry, and figurative languages.
arXiv Detail & Related papers (2022-09-24T22:40:01Z) - Deep Latent-Variable Models for Text Generation [7.119436003155924]
Deep neural network-based end-to-end architectures have been widely adopted.
End-to-end approach conflates all sub-modules, which used to be designed by complex handcrafted rules, into a holistic encode-decode architecture.
This dissertation presents how deep latent-variable models can improve over the standard encoder-decoder model for text generation.
arXiv Detail & Related papers (2022-03-03T23:06:39Z) - NeuroLogic A*esque Decoding: Constrained Text Generation with Lookahead
Heuristics [73.96837492216204]
We propose NeuroLogic A*esque, a decoding algorithm that incorporates estimates of future cost.
We develop efficient lookaheads that are efficient for large-scale language models.
Our approach achieves competitive baselines on five generation tasks, and new state-of-the-art performance on table-to-text generation, constrained machine translation, and keyword-constrained generation.
arXiv Detail & Related papers (2021-12-16T09:22:54Z) - Long Text Generation by Modeling Sentence-Level and Discourse-Level
Coherence [59.51720326054546]
We propose a long text generation model, which can represent the prefix sentences at sentence level and discourse level in the decoding process.
Our model can generate more coherent texts than state-of-the-art baselines.
arXiv Detail & Related papers (2021-05-19T07:29:08Z) - Positioning yourself in the maze of Neural Text Generation: A
Task-Agnostic Survey [54.34370423151014]
This paper surveys the components of modeling approaches relaying task impacts across various generation tasks such as storytelling, summarization, translation etc.
We present an abstraction of the imperative techniques with respect to learning paradigms, pretraining, modeling approaches, decoding and the key challenges outstanding in the field in each of them.
arXiv Detail & Related papers (2020-10-14T17:54:42Z) - Neural Language Generation: Formulation, Methods, and Evaluation [13.62873478165553]
Recent advances in neural network-based generative modeling have reignited the hopes in having computer systems capable of seamlessly conversing with humans.
High capacity deep learning models trained on large scale datasets demonstrate unparalleled abilities to learn patterns in the data even in the lack of explicit supervision signals.
There is no standard way to assess the quality of text produced by these generative models, which constitutes a serious bottleneck towards the progress of the field.
arXiv Detail & Related papers (2020-07-31T00:08:28Z) - QURIOUS: Question Generation Pretraining for Text Generation [13.595014409069584]
We propose question generation as a pretraining method, which better aligns with the text generation objectives.
Our text generation models pretrained with this method are better at understanding the essence of the input and are better language models for the target task.
arXiv Detail & Related papers (2020-04-23T08:41:52Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.