Federated Offline Reinforcement Learning
- URL: http://arxiv.org/abs/2206.05581v3
- Date: Sat, 27 Jan 2024 16:23:25 GMT
- Title: Federated Offline Reinforcement Learning
- Authors: Doudou Zhou, Yufeng Zhang, Aaron Sonabend-W, Zhaoran Wang, Junwei Lu,
Tianxi Cai
- Abstract summary: We propose a multi-site Markov decision process model that allows for both homogeneous and heterogeneous effects across sites.
We design the first federated policy optimization algorithm for offline RL with sample complexity.
We give a theoretical guarantee for the proposed algorithm, where the suboptimality for the learned policies is comparable to the rate as if data is not distributed.
- Score: 55.326673977320574
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Evidence-based or data-driven dynamic treatment regimes are essential for
personalized medicine, which can benefit from offline reinforcement learning
(RL). Although massive healthcare data are available across medical
institutions, they are prohibited from sharing due to privacy constraints.
Besides, heterogeneity exists in different sites. As a result, federated
offline RL algorithms are necessary and promising to deal with the problems. In
this paper, we propose a multi-site Markov decision process model that allows
for both homogeneous and heterogeneous effects across sites. The proposed model
makes the analysis of the site-level features possible. We design the first
federated policy optimization algorithm for offline RL with sample complexity.
The proposed algorithm is communication-efficient, which requires only a single
round of communication interaction by exchanging summary statistics. We give a
theoretical guarantee for the proposed algorithm, where the suboptimality for
the learned policies is comparable to the rate as if data is not distributed.
Extensive simulations demonstrate the effectiveness of the proposed algorithm.
The method is applied to a sepsis dataset in multiple sites to illustrate its
use in clinical settings.
Related papers
- Causal prompting model-based offline reinforcement learning [16.95292725275873]
Model-based offline RL allows agents to fully utilise pre-collected datasets without requiring additional or unethical explorations.
Applying model-based offline RL to online systems presents challenges due to the highly suboptimal (noise-filled) and diverse nature of datasets generated by online systems.
We introduce the Causal Prompting Reinforcement Learning framework, designed for highly suboptimal and resource-constrained online scenarios.
arXiv Detail & Related papers (2024-06-03T07:28:57Z) - Communication-Efficient Hybrid Federated Learning for E-health with Horizontal and Vertical Data Partitioning [67.49221252724229]
E-health allows smart devices and medical institutions to collaboratively collect patients' data, which is trained by Artificial Intelligence (AI) technologies to help doctors make diagnosis.
Applying federated learning in e-health faces many challenges.
Medical data is both horizontally and vertically partitioned.
A naive combination of HFL and VFL has limitations including low training efficiency, unsound convergence analysis, and lack of parameter tuning strategies.
arXiv Detail & Related papers (2024-04-15T19:45:07Z) - On Sample-Efficient Offline Reinforcement Learning: Data Diversity,
Posterior Sampling, and Beyond [29.449446595110643]
We propose a notion of data diversity that subsumes the previous notions of coverage measures in offline RL.
Our proposed model-free PS-based algorithm for offline RL is novel, with sub-optimality bounds that are frequentist (i.e., worst-case) in nature.
arXiv Detail & Related papers (2024-01-06T20:52:04Z) - Auto-FedRL: Federated Hyperparameter Optimization for
Multi-institutional Medical Image Segmentation [48.821062916381685]
Federated learning (FL) is a distributed machine learning technique that enables collaborative model training while avoiding explicit data sharing.
In this work, we propose an efficient reinforcement learning(RL)-based federated hyperparameter optimization algorithm, termed Auto-FedRL.
The effectiveness of the proposed method is validated on a heterogeneous data split of the CIFAR-10 dataset and two real-world medical image segmentation datasets.
arXiv Detail & Related papers (2022-03-12T04:11:42Z) - Local Learning Matters: Rethinking Data Heterogeneity in Federated
Learning [61.488646649045215]
Federated learning (FL) is a promising strategy for performing privacy-preserving, distributed learning with a network of clients (i.e., edge devices)
arXiv Detail & Related papers (2021-11-28T19:03:39Z) - False Correlation Reduction for Offline Reinforcement Learning [115.11954432080749]
We propose falSe COrrelation REduction (SCORE) for offline RL, a practically effective and theoretically provable algorithm.
We empirically show that SCORE achieves the SoTA performance with 3.1x acceleration on various tasks in a standard benchmark (D4RL)
arXiv Detail & Related papers (2021-10-24T15:34:03Z) - Resource-constrained Federated Edge Learning with Heterogeneous Data:
Formulation and Analysis [8.863089484787835]
We propose a distributed approximate Newton-type Newton-type training scheme, namely FedOVA, to solve the heterogeneous statistical challenge brought by heterogeneous data.
FedOVA decomposes a multi-class classification problem into more straightforward binary classification problems and then combines their respective outputs using ensemble learning.
arXiv Detail & Related papers (2021-10-14T17:35:24Z) - Sample-Efficient Reinforcement Learning via Counterfactual-Based Data
Augmentation [15.451690870640295]
In some scenarios such as healthcare, usually only few records are available for each patient, impeding the application of currentReinforcement learning algorithms.
We propose a data-efficient RL algorithm that exploits structural causal models (SCMs) to model the state dynamics.
We show that counterfactual outcomes are identifiable under mild conditions and that Q- learning on the counterfactual-based augmented data set converges to the optimal value function.
arXiv Detail & Related papers (2020-12-16T17:21:13Z) - FedPD: A Federated Learning Framework with Optimal Rates and Adaptivity
to Non-IID Data [59.50904660420082]
Federated Learning (FL) has become a popular paradigm for learning from distributed data.
To effectively utilize data at different devices without moving them to the cloud, algorithms such as the Federated Averaging (FedAvg) have adopted a "computation then aggregation" (CTA) model.
arXiv Detail & Related papers (2020-05-22T23:07:42Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.