From Perception to Programs: Regularize, Overparameterize, and Amortize
- URL: http://arxiv.org/abs/2206.05922v2
- Date: Wed, 31 May 2023 19:10:41 GMT
- Title: From Perception to Programs: Regularize, Overparameterize, and Amortize
- Authors: Hao Tang and Kevin Ellis
- Abstract summary: We develop techniques for neurosymbolic program synthesis where perceptual input is first parsed by neural nets into a low-dimensional interpretable representation, which is then processed by a synthesized program.
We explore several techniques for relaxing the problem and jointly learning all modules end-to-end with gradient descent.
Collectedly this toolbox improves the stability of gradient-guided program search, and suggests ways of learning both how to perceive input as discrete abstractions, and how to symbolically process those abstractions as programs.
- Score: 21.221244694737134
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Toward combining inductive reasoning with perception abilities, we develop
techniques for neurosymbolic program synthesis where perceptual input is first
parsed by neural nets into a low-dimensional interpretable representation,
which is then processed by a synthesized program. We explore several techniques
for relaxing the problem and jointly learning all modules end-to-end with
gradient descent: multitask learning; amortized inference;
overparameterization; and a differentiable strategy for penalizing lengthy
programs. Collectedly this toolbox improves the stability of gradient-guided
program search, and suggests ways of learning both how to perceive input as
discrete abstractions, and how to symbolically process those abstractions as
programs.
Related papers
- Deep Learning Through A Telescoping Lens: A Simple Model Provides Empirical Insights On Grokking, Gradient Boosting & Beyond [61.18736646013446]
In pursuit of a deeper understanding of its surprising behaviors, we investigate the utility of a simple yet accurate model of a trained neural network.
Across three case studies, we illustrate how it can be applied to derive new empirical insights on a diverse range of prominent phenomena.
arXiv Detail & Related papers (2024-10-31T22:54:34Z) - Differentiable Logic Programming for Distant Supervision [4.820391833117535]
We introduce a new method for integrating neural networks with logic programming in Neural-Symbolic AI (NeSy)
Unlike prior methods, our approach does not depend on symbolic solvers for reasoning about missing labels.
This method facilitates more efficient learning under distant supervision.
arXiv Detail & Related papers (2024-08-22T17:55:52Z) - Guided Sketch-Based Program Induction by Search Gradients [0.0]
We propose a framework for learning parameterized programs via search gradients using evolution strategies.
This formulation departs from traditional program induction as it allows for the programmer to impart task-specific code to the program'sketch'
arXiv Detail & Related papers (2024-02-10T16:47:53Z) - Learning Differentiable Logic Programs for Abstract Visual Reasoning [18.82429807065658]
Differentiable forward reasoning has been developed to integrate reasoning with gradient-based machine learning paradigms.
NEUMANN is a graph-based differentiable forward reasoner, passing messages in a memory-efficient manner and handling structured programs with functors.
We demonstrate that NEUMANN solves visual reasoning tasks efficiently, outperforming neural, symbolic, and neuro-symbolic baselines.
arXiv Detail & Related papers (2023-07-03T11:02:40Z) - Neuro-Symbolic Learning of Answer Set Programs from Raw Data [54.56905063752427]
Neuro-Symbolic AI aims to combine interpretability of symbolic techniques with the ability of deep learning to learn from raw data.
We introduce Neuro-Symbolic Inductive Learner (NSIL), an approach that trains a general neural network to extract latent concepts from raw data.
NSIL learns expressive knowledge, solves computationally complex problems, and achieves state-of-the-art performance in terms of accuracy and data efficiency.
arXiv Detail & Related papers (2022-05-25T12:41:59Z) - Representing Partial Programs with Blended Abstract Semantics [62.20775388513027]
We introduce a technique for representing partially written programs in a program synthesis engine.
We learn an approximate execution model implemented as a modular neural network.
We show that these hybrid neuro-symbolic representations enable execution-guided synthesizers to use more powerful language constructs.
arXiv Detail & Related papers (2020-12-23T20:40:18Z) - Optimal Neural Program Synthesis from Multimodal Specifications [45.35689345004124]
Multimodal program synthesis is an attractive way to scale program synthesis to challenging settings.
This paper proposes an optimal neural synthesis approach where the goal is to find a program that satisfies user-provided constraints.
arXiv Detail & Related papers (2020-10-04T20:51:21Z) - BUSTLE: Bottom-Up Program Synthesis Through Learning-Guided Exploration [72.88493072196094]
We present a new synthesis approach that leverages learning to guide a bottom-up search over programs.
In particular, we train a model to prioritize compositions of intermediate values during search conditioned on a set of input-output examples.
We show that the combination of learning and bottom-up search is remarkably effective, even with simple supervised learning approaches.
arXiv Detail & Related papers (2020-07-28T17:46:18Z) - Learning Differentiable Programs with Admissible Neural Heuristics [43.54820901841979]
We study the problem of learning differentiable functions expressed as programs in a domain-specific language.
We frame this optimization problem as a search in a weighted graph whose paths encode top-down derivations of program syntax.
Our key innovation is to view various classes of neural networks as continuous relaxations over the space of programs.
arXiv Detail & Related papers (2020-07-23T16:07:39Z) - MetaSDF: Meta-learning Signed Distance Functions [85.81290552559817]
Generalizing across shapes with neural implicit representations amounts to learning priors over the respective function space.
We formalize learning of a shape space as a meta-learning problem and leverage gradient-based meta-learning algorithms to solve this task.
arXiv Detail & Related papers (2020-06-17T05:14:53Z) - Disentangling Adaptive Gradient Methods from Learning Rates [65.0397050979662]
We take a deeper look at how adaptive gradient methods interact with the learning rate schedule.
We introduce a "grafting" experiment which decouples an update's magnitude from its direction.
We present some empirical and theoretical retrospectives on the generalization of adaptive gradient methods.
arXiv Detail & Related papers (2020-02-26T21:42:49Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.